1
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
2
|
Bai Y, Sui X, Xuan Z, Du Y, Fu M, Zheng Z, Yang K, Xu C, Liu Y, Liu B, Zhong M, Zhang Z, Zheng J, Hu X, Zhang L, Sun H, Shao C. Discovery of a small-molecule NDR1 agonist for prostate cancer therapy. Front Pharmacol 2024; 15:1367358. [PMID: 38410130 PMCID: PMC10896269 DOI: 10.3389/fphar.2024.1367358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Prostatic cancer (PCa) is a common malignant neoplasm in men worldwide. Most patients develop castration-resistant prostate cancer (CRPC) after treatment with androgen deprivation therapy (ADT), usually resulting in death. Therefore, investigating new therapeutic targets and drugs for PCa patients is urgently needed. Nuclear Dbf2-related kinase 1 (NDR1), also known as STK38, is a serine/threonine kinase in the NDR/LATS kinase family that plays a critical role in cellular processes, including immunity, inflammation, metastasis, and tumorigenesis. It was reported that NDR1 inhibited the metastasis of prostate cancer cells by suppressing epithelial-mesenchymal transition (EMT), and decreased NDR1 expression might lead to a poorer prognosis, suggesting the enormous potential of NDR1 in antitumorigenesis. In this study, we characterized a small-molecule agonist named aNDR1, which specifically bound to NDR1 and potently promoted NDR1 expression, enzymatic activity and phosphorylation. aNDR1 exhibited drug-like properties, such as favorable stability, plasma protein binding capacity, cell membrane permeability, and PCa cell-specific inhibition, while having no obvious effect on normal prostate cells. Meanwhile, aNDR1 exhibited good antitumor activity both in vitro and in vivo. aNDR1 inhibited proliferation and migration of PCa cells and promoted apoptosis of PCa cells in vitro. We further found that aNDR1 inhibited subcutaneous tumors and lung metastatic nodules in vivo, with no obvious toxicity to the body. In summary, our study presents a potential small-molecule lead compound that targets NDR1 for clinical therapy of PCa patients.
Collapse
Affiliation(s)
- Yang Bai
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiuyuan Sui
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yifan Du
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meiling Fu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zeyuan Zheng
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kunao Yang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chunlan Xu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yankuo Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Zhong
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhengying Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Hu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chen Shao
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Rawat P, Thakur S, Dogra S, Jaswal K, Dehury B, Mondal P. Diet-induced induction of hepatic Serine/Threonine Kinase STK38 triggers proinflammation and hepatic lipid accumulation. J Biol Chem 2023; 299:104678. [PMID: 37028764 DOI: 10.1016/j.jbc.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. Although the involvement of chronic overnutrition, systemic inflammation, and insulin resistance in the development of NAFLD is well-established, however, the associations among these remain to be elucidated. Several studies have reported that chronic overnutrition, such as excessive consumption of fats (High Fat Diet, HFD) can cause insulin resistance and inflammation. However, the mechanisms by which HFD exerts inflammation and thereby promotes insulin resistance and intrahepatic fat accumulation remain poorly understood. Here, we show that HFD induces the expression of hepatic Serine/Threonine Kinase 38 (STK38), which further induces systemic inflammation leading to insulin resistance. Notably, Ectopic expression of STK38 in mouse liver leads to lean NAFLD phenotype with hepatic inflammation, insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia in mice fed on a regular chow diet. Further, depletion of hepatic STK38 in HFD-fed mice remarkably reduces proinflammation, improves hepatic insulin sensitivity, and decreases hepatic fat accumulation. Mechanistically, two critical stimuli are elicited by STK38 action. For one stimulus, STK38 binds to Tank-Binding protein Kinase1 (TBK1) and induces TBK1 phosphorylation to promote NF-κβ nuclear translocation that mobilizes the release of pro-inflammatory cytokines and eventually leads to insulin resistance. The second, stimulus involves intrahepatic lipid accumulation by enhanced de novo lipogenesis via reducing the AMPK-ACC signaling axis. These findings identify STK38 as a novel nutrient-sensitive pro-inflammatory and lipogenic factor in maintaining hepatic energy homeostasis, and it provides a promising target for hepatic and immune health.
Collapse
|
4
|
Fukasawa T, Enomoto A, Yoshizaki-Ogawa A, Sato S, Miyagawa K, Yoshizaki A. The Role of Mammalian STK38 in DNA Damage Response and Targeting for Radio-Sensitization. Cancers (Basel) 2023; 15:cancers15072054. [PMID: 37046714 PMCID: PMC10093458 DOI: 10.3390/cancers15072054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Protein kinases, found in the nucleus and cytoplasm, play essential roles in a multitude of cellular processes, including cell division, proliferation, apoptosis, and signal transduction. STK38 is a member of the protein kinase A (PKA)/PKG/PKC family implicated in regulating cell division and morphogenesis in yeast and C. elegans. However, its function remained largely unknown in mammals. In recent years, advances in research on STK38 and the identification of its substrates has led to a better understanding of its function and role in mammals. This review discusses the structure, expression, and regulation of activity as a kinase, its role in the DNA damage response, cross-talk with other signaling pathways, and its application for radio-sensitization.
Collapse
|
5
|
Gao X, Lian Q, Guan B, Liu QY, Meng M, Chen Y, Jin J, Li H, Liu X, Sun Z, Liu L, He QY, Zhang G. ZSWIM1 Promotes the Proliferation and Metastasis of Lung Adenocarcinoma Cells through the STK38/MEKK2/ERK1/2 Axis. J Proteome Res 2022; 22:1080-1091. [PMID: 36511424 DOI: 10.1021/acs.jproteome.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Investigating the functions of the proteins with no or less functional annotations is an important goal of the HPP (Human Proteome Project) Grand Project. In this study, we investigated the function of such a protein, ZSWIM1 (C20orf162), its gene located on chromosome 20. Its expression is upregulated in lung adenocarcinoma compared with the adjacent normal tissues and negatively correlated with the overall survival. Overexpressing ZSWIM1 markedly promotes the proliferation, migration, invasion as well as epithelial-to-mesenchymal transition in lung adenocarcinoma cells, while knocking down ZSWIM1 functions oppositely. The interactome of ZSWIM1 was identified by immunoprecipitation-mass spectrometry, and we verified the interaction of ZSWIM1 with the potential partner, STK38. ZSWIM1 antagonized the function of STK38. Mechanically, ZSWIM1 promoted the activation of MEKK2/ERK1/2 pathway through interacting with STK38, leading to the release of MEKK2. Taken together, ZSWIM1 can be annotated as an oncogene in lung adenocarcinoma, and the STK38/MEKK2/ERK1/2 axis mediates its promoting role in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qionghua Lian
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Baiye Guan
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu-Yu Liu
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Meng Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jingjie Jin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huihua Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Martin AP, Aushev VN, Zalcman G, Camonis JH. The STK38-XPO1 axis, a new actor in physiology and cancer. Cell Mol Life Sci 2021; 78:1943-1955. [PMID: 33145612 PMCID: PMC11072208 DOI: 10.1007/s00018-020-03690-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
The Hippo signal transduction pathway is an essential regulator of organ size during developmental growth by controlling multiple cellular processes such as cell proliferation, cell death, differentiation, and stemness. Dysfunctional Hippo signaling pathway leads to dramatic tissue overgrowth. Here, we will briefly introduce the Hippo tumor suppressor pathway before focusing on one of its members and the unexpected twists that followed our quest of its functions in its multifarious actions beside the Hippo pathway: the STK38 kinase. In this review, we will precisely discuss the newly identified role of STK38 on regulating the nuclear export machinery by phosphorylating and activating, the major nuclear export receptor XPO1. Finally, we will phrase STK38's role on regulating the subcellular distribution of crucial cellular regulators such as Beclin1 and YAP1 with its implication in cancer.
Collapse
Affiliation(s)
- Alexandre Pj Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA.
| | - Vasily N Aushev
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gérard Zalcman
- Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hopital Bichat-Claude-Bernard, Paris, France
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| |
Collapse
|
7
|
Martin APJ, Camonis JH. The hippo kinase STK38 ensures functionality of XPO1. Cell Cycle 2020; 19:2982-2995. [PMID: 33017560 PMCID: PMC7714482 DOI: 10.1080/15384101.2020.1826619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022] Open
Abstract
The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
8
|
Qin B, Yu J, Nowsheen S, Zhao F, Wang L, Lou Z. STK38 promotes ATM activation by acting as a reader of histone H4 ufmylation. SCIENCE ADVANCES 2020; 6:eaax8214. [PMID: 32537488 PMCID: PMC7269669 DOI: 10.1126/sciadv.aax8214] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/10/2020] [Indexed: 05/11/2023]
Abstract
The ATM (ataxia-telangiectasia mutated) kinase is rapidly activated following DNA damage and phosphorylates its downstream targets to launch DDR signaling. Recently, we and others showed that UFM1 signaling promotes ATM activation. We further discovered that monoufmylation of histone H4 at Lys31 by UFM1-specific ligase 1 (UFL1) is an important step in the amplification of ATM activation. However, how monoufmylated H4 enhances ATM activation is still unknown. Here, we report STK38, a kinase in the Hippo pathway, serves as a reader for histone H4 ufmylation to promote ATM activation in a kinase-independent manner. STK38 contains a potential UFM1 binding motif which recognizes ufmylated H4 and recruits the SUV39H1 to the double-strand breaks, resulting in H3K9 trimethylation and Tip60 activation to promote ATM activation. Together, STK38 is a previously unknown player in DNA damage signaling and functions as a reader of monoufmylated H4 at Lys31 to promote ATM activation.
Collapse
Affiliation(s)
- Bo Qin
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Somaira Nowsheen
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Division of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding author.
| |
Collapse
|
9
|
Ye X, Ong N, An H, Zheng Y. The Emerging Roles of NDR1/2 in Infection and Inflammation. Front Immunol 2020; 11:534. [PMID: 32265942 PMCID: PMC7105721 DOI: 10.3389/fimmu.2020.00534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
The nuclear Dbf2-related (NDR) kinases NDR1 and NDR2 belong to the NDR/LATS (large tumor suppressor) subfamily in the Hippo signaling pathway. They are highly conserved from yeast to humans. It is well-known that NDR1/2 control important cellular processes, such as morphological changes, centrosome duplication, cell proliferation, and apoptosis. Recent studies revealed that NDR1/2 also play important roles in the regulation of infection and inflammation. In this review, we summarized the roles of NDR1/2 in the modulation of inflammation induced by cytokines and innate immune response against the infection of bacteria and viruses, emphasizing on how NDR1/2 regulate signaling transduction through Hippo pathway-dependent and -independent manners.
Collapse
Affiliation(s)
- Xiaolan Ye
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Naomi Ong
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huazhang An
- Center for Translational Medicine, Clinical Cancer Institute, Second Military Medical University, Shanghai, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Martin APJ, Jacquemyn M, Lipecka J, Chhuon C, Aushev VN, Meunier B, Singh MK, Carpi N, Piel M, Codogno P, Hergovich A, Parrini MC, Zalcman G, Guerrera IC, Daelemans D, Camonis JH. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. EMBO Rep 2019; 20:e48150. [PMID: 31544310 PMCID: PMC6832005 DOI: 10.15252/embr.201948150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 01/19/2023] Open
Abstract
STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Maarten Jacquemyn
- Laboratory of Virology and ChemotherapyKU Leuven Department of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Joanna Lipecka
- Inserm U894Center of Psychiatry and NeuroscienceParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Cerina Chhuon
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Proteomics Platform 3P5‐NeckerUniversité Paris Descartes ‐ Structure Fédérative de Recherche NeckerINSERM US24/CNRS UMS3633ParisFrance
| | | | - Brigitte Meunier
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Manish K Singh
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Nicolas Carpi
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- CNRSUMR 144ParisFrance
| | - Matthieu Piel
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- CNRSUMR 144ParisFrance
| | - Patrice Codogno
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Inserm U1151/CNRS UMR 8253Institut Necker Enfants‐MaladesParisFrance
| | | | - Maria Carla Parrini
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| | - Gerard Zalcman
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
- Sorbonne Paris CitéUniversité Paris DiderotParisFrance
| | - Ida Chiara Guerrera
- Université Paris DescartesSorbonne Paris CitéParisFrance
- Proteomics Platform 3P5‐NeckerUniversité Paris Descartes ‐ Structure Fédérative de Recherche NeckerINSERM US24/CNRS UMS3633ParisFrance
| | - Dirk Daelemans
- Laboratory of Virology and ChemotherapyKU Leuven Department of Microbiology, Immunology and TransplantationRega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| | - Jacques H Camonis
- ART GroupInserm U830ParisFrance
- Institut CurieCentre de RechercheParis Sciences et Lettres Research UniversityParisFrance
| |
Collapse
|
11
|
Lear TB, McKelvey AC, Evankovich JW, Rajbhandari S, Coon TA, Dunn SR, Londino JD, McVerry BJ, Zhang Y, Valenzi E, Burton CL, Gordon R, Gingras S, Lockwood KC, Jurczak MJ, Lafyatis R, Shlomchik MJ, Liu Y, Chen BB. KIAA0317 regulates pulmonary inflammation through SOCS2 degradation. JCI Insight 2019; 4:129110. [PMID: 31578312 DOI: 10.1172/jci.insight.129110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Dysregulated proinflammatory cytokine release has been implicated in the pathogenesis of several life-threatening acute lung illnesses such as pneumonia, sepsis, and acute respiratory distress syndrome. Suppressors of cytokine signaling proteins, particularly SOCS2, have recently been described as antiinflammatory mediators. However, the regulation of SOCS2 protein has not been described. Here we describe a mechanism of SOCS2 regulation by the action of the ubiquitin E3 ligase KIAA0317. KIAA0317-mediated degradation of SOCS2 exacerbated inflammation in vitro, and depletion of KIAA0317 in vivo ameliorated pulmonary inflammation. KIAA0317-knockout mice exhibited resistance to LPS-induced pulmonary inflammation, while KIAA03017 reexpression mitigated this effect. We uncovered a small molecule inhibitor of KIAA0317 protein (BC-1365) that prevented SOCS2 degradation and attenuated LPS- and P. aeruginosa-induced lung inflammation in vivo. These studies show KIAA0317 to be a critical mediator of pulmonary inflammation through its degradation of SOCS2 and a potential candidate target for therapeutic inhibition.
Collapse
Affiliation(s)
- Travis B Lear
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine.,Department of Environmental and Occupational Health, School of Public Health
| | - Alison C McKelvey
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - John W Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - Shristi Rajbhandari
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - Tiffany A Coon
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - Sarah R Dunn
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - James D Londino
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine.,Department of Environmental and Occupational Health, School of Public Health
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | - Eleanor Valenzi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine
| | - Christine L Burton
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine
| | | | | | | | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine
| | | | - Yuan Liu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine.,Aging Institute and.,McGowan Institute for Regenerative Medicine
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine.,Aging Institute and.,Vascular Medicine Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Xiang G, Weiwei H, Erji G, Haitao M. DIAPH3 promotes the tumorigenesis of lung adenocarcinoma. Exp Cell Res 2019; 385:111662. [PMID: 31586548 DOI: 10.1016/j.yexcr.2019.111662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Aberrant activation of MEKK-MEK-ERK signaling is frequently observed in lung cancer. Several inhibitors, which target this pathway, have shown clinical potential for the lung cancer treatment. Better understanding the regulation of this pathway would help the development of treatment strategies. In this study, we have identified the DIAPH3 as an up-regulated gene in lung adenocarcinoma. DIAPH3 promoted the growth of lung cancer cells both in the liquid culture and in the soft agar, and knockdown DIAPH3 inhibited the tumorigenesis both in the nude mice and in the de novo mouse model. In the molecular mechanism study, DIAPH3 was identified as the binding protein of STK38, impaired the interaction between STK38 and MEKK, and activated ERK signaling. Taken together, this study demonstrated the oncogenic roles of DIAPH3 in the tumorigenesis of lung cancer by interacting with STK38.
Collapse
Affiliation(s)
- Guo Xiang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - He Weiwei
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Gao Erji
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ma Haitao
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
13
|
Kim HY, Yoo TH, Cho JY, Kim HC, Lee WW. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages. FASEB J 2019; 33:10844-10858. [PMID: 31284759 DOI: 10.1096/fj.201900730r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoxyl sulfate (IS) is a uremic toxin associated with increased prevalence of cardiovascular diseases (CVDs) in patients with chronic kidney disease. Despite the crucial role of uremia-related immune dysfunction, a majority of studies attempting to elucidate its pathogenic role in CVD have focused on IS-mediated endothelial dysfunction. Thus, we investigated the underlying molecular mechanisms involved in IS-induced production of TNF-α, a major cardiotoxic cytokine, by human macrophages. We found that crosstalk between the aryl hydrocarbon receptor (AhR), NF-κB, and the suppressor of cytokine signaling (SOCS)2 is important for TNF-α production in IS-stimulated human macrophages. IS-activated AhR rapidly associates with the p65 NF-κB subunit, resulting in mutual inhibition of AhR and NF-κB and inhibition of TNF-α production at an early time point. Later, this repression of TNF-α production is alleviated when SOCS2, a negative modulator of NF-κB, is directly induced by IS-activated AhR. In addition, once free of inhibition, activated AhR induces TNF-α expression by interacting with AhR binding sites in the TNF-α gene. Lastly, we confirmed decreased AhR and increased SOCS2 expression in monocytes of patients with end-stage renal disease, indicating the activation of AhR. Taken together, our results suggest that IS-induced TNF-α production in macrophages is regulated through a complicated mechanism involving interaction of AhR, NF-κB, and SOCS2.-Kim, H. Y., Yoo, T.-H., Cho, J.-Y., Kim, H. C., Lee, W.-W. Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology.,Cancer Research Institute
| | | | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine-Hospital, Seoul, South Korea
| | - Hyeon Chang Kim
- Cardiovascular and Metabolic Diseases Etiology Research Center.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology.,Cancer Research Institute.,Department of Biomedical Sciences.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
14
|
Sharif AA, Hergovich A. The NDR/LATS protein kinases in immunology and cancer biology. Semin Cancer Biol 2018; 48:104-114. [PMID: 28579171 DOI: 10.1016/j.semcancer.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
15
|
Paul I, Batth TS, Iglesias-Gato D, Al-Araimi A, Al-Haddabi I, Alkharusi A, Norstedt G, Olsen JV, Zadjali F, Flores-Morales A. The ubiquitin ligase Cullin5 SOCS2 regulates NDR1/STK38 stability and NF-κB transactivation. Sci Rep 2017; 7:42800. [PMID: 28216640 PMCID: PMC5316984 DOI: 10.1038/srep42800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Abstract
SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic profiling upon SOCS2 depletion and yield quantitative data for ~4200 proteins. Through this screen we identify a novel target of SOCS2, the serine-threonine kinase NDR1. Over-expression of SOCS2 accelerates turnover, while its knockdown stabilizes, endogenous NDR1 protein. SOCS2 interacts with NDR1 and promotes its degradation through K48-linked ubiquitination. Functionally, over-expression of SOCS2 antagonizes NDR1-induced TNFα-stimulated NF-κB activity. Conversely, depletion of NDR1 rescues the effect of SOCS2-deficiency on TNFα-induced NF-κB transactivation. Using a SOCS2−/− mice model of colitis we show that SOCS2-deficiency is pro-inflammatory and negatively correlates with NDR1 and nuclear p65 levels. Lastly, we provide evidence to suggest that NDR1 acts as an oncogene in prostate cancer. To the best of our knowledge, this is the first report of an identified E3 ligase for NDR1. These results might explain how SOCS2-deficiency leads to hyper-activation of NF-κB and downstream pathological implications and posits that SOCS2 induced degradation of NDR1 may act as a switch in restricting TNFα-NF-κB pathway.
Collapse
Affiliation(s)
- Indranil Paul
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tanveer S Batth
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, c/o the Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Amna Al-Araimi
- College of Medicine and Health Sciences, Sultan Qaboos University, P.O. box 35, P.C 123, Muscat, Oman
| | - Ibrahim Al-Haddabi
- College of Medicine and Health Sciences, Sultan Qaboos University, P.O. box 35, P.C 123, Muscat, Oman
| | - Amira Alkharusi
- College of Medicine and Health Sciences, Sultan Qaboos University, P.O. box 35, P.C 123, Muscat, Oman
| | - Gunnar Norstedt
- College of Medicine and Health Sciences, Sultan Qaboos University, P.O. box 35, P.C 123, Muscat, Oman.,Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Fahad Zadjali
- College of Medicine and Health Sciences, Sultan Qaboos University, P.O. box 35, P.C 123, Muscat, Oman
| | - Amilcar Flores-Morales
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, c/o the Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Atkins C, Evans CW, Nordin B, Patricelli MP, Reynolds R, Wennerberg K, Noah JW. Global Human-Kinase Screening Identifies Therapeutic Host Targets against Influenza. ACTA ACUST UNITED AC 2014; 19:936-46. [PMID: 24464431 DOI: 10.1177/1087057113518068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/03/2013] [Indexed: 01/03/2023]
Abstract
During viral infection of human cells, host kinases mediate signaling activities that are used by all viruses for replication; therefore, targeting of host kinases is of broad therapeutic interest. Here, host kinases were globally screened during human influenza virus (H1N1) infection to determine the time-dependent effects of virus infection and replication on kinase function. Desthiobiotin-labeled analogs of adenosine triphosphate and adenosine diphosphate were used to probe and covalently label host kinases in infected cell lysates, and probe affinity was determined. Using infected human A549 cells, we screened for time-dependent signal changes and identified host kinases whose probe affinities differed significantly when compared to uninfected cells. Our screen identified 10 novel host kinases that have not been previously shown to be involved with influenza virus replication, and we validated the functional importance of these novel kinases during infection using targeted small interfering RNAs (siRNAs). The effects of kinase-targeted siRNA knockdowns on replicating virus levels were measured by quantitative reverse-transcription PCR and cytoprotection assays. We identified several novel host kinases that, when knocked down, enhanced or reduced the viral load in cell culture. This preliminary work represents the first screen of the changing host kinome in influenza virus-infected human cells.
Collapse
Affiliation(s)
- Colm Atkins
- Southern Research Institute, Birmingham, AL, USA University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - James W Noah
- Southern Research Institute, Birmingham, AL, USA University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|