1
|
Extracellular vesicle proteomic analysis leads to the discovery of HDGF as a new factor in multiple myeloma biology. Blood Adv 2022; 6:3458-3471. [PMID: 35395072 PMCID: PMC9198912 DOI: 10.1182/bloodadvances.2021006187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
HDGF is secreted by and found in multiple myeloma cell extracellular vesicles; it activates AKT and sustains multiple myeloma cell growth. HDGF polarizes naïve macrophages to an M1 phenotype and generates immunosuppressive M-MDSC.
Identifying factors secreted by multiple myeloma (MM) cells that may contribute to MM tumor biology and progression is of the utmost importance. In this study, hepatoma-derived growth factor (HDGF) was identified as a protein present in extracellular vesicles (EVs) released from human MM cell lines (HMCLs). Investigation of the role of HDGF in MM cell biology revealed lower proliferation of HMCLs following HDGF knockdown and AKT phosphorylation following the addition of exogenous HDGF. Metabolic analysis demonstrated that HDGF enhances the already high glycolytic levels of HMCLs and significantly lowers mitochondrial respiration, indicating that HDGF may play a role in myeloma cell survival and/or act in a paracrine manner on cells in the bone marrow (BM) tumor microenvironment (ME). Indeed, HDGF polarizes macrophages to an M1-like phenotype and phenotypically alters naïve CD14+ monocytes to resemble myeloid-derived suppressor cells which are functionally suppressive. In summary, HDGF is a novel factor in MM biology and may function to both maintain MM cell viability as well as modify the tumor ME.
Collapse
|
2
|
Chen Z, Xie Y, Luo H, Song Y, Que T, Hu R, Huang H, Luo K, Li C, Qin C, Zheng C, Fang W, Liu L, Long H, Luo Q. NAP1L1 promotes proliferation and chemoresistance in glioma by inducing CCND1/CDK4/CDK6 expression through its interaction with HDGF and activation of c-Jun. Aging (Albany NY) 2021; 13:26180-26200. [PMID: 34959221 PMCID: PMC8751585 DOI: 10.18632/aging.203805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The prognosis of glioma is poor as its pathogenesis and mechanisms underlying cisplatin chemoresistance remain unclear. Nucleosome assembly protein 1 like 1 (NAP1L1) is regarded as a hallmark of malignant tumors. However, the role of NAP1L1 in glioma remains unknown. In this study, we aimed to investigate the molecular functions of NAP1L1 in glioma and its involvement in cisplatin chemoresistance, if any. NAP1L1 was found to be upregulated in samples from The Cancer Genome Atlas (TCGA) database. Immunohistochemistry indicated that NAP1L1 and hepatoma-derived growth factor (HDGF) were enhanced in glioma as compared to the para-tumor tissues. High expressions of NAP1L1 and HDGF were positively correlated with the WHO grade, KPS, Ki-67 index, and recurrence. Moreover, NAP1L1 expression was also positively correlated with the HDGF expression in glioma tissues. Functional studies suggested that knocking down NAP1L1 could significantly inhibit glioma cell proliferation both in vitro and in vivo, as well as enhance the sensitivity of glioma cells to cisplatin (cDDP) in vitro. Mechanistically, NAP1L1 could interact with HDGF at the protein level and they co-localize in the cytoplasm. HDGF knockdown in NAP1L1-overexpressing glioma cells significantly inhibited cell proliferation. Furthermore, HDGF could interact with c-Jun, an oncogenic transcription factor, which eventually induced the expressions of cell cycle promoters, CCND1/CDK4/CDK6. This finding suggested that NAP1L1 could interact with HDGF, and the latter recruited c-Jun, a key oncogenic transcription factor, that further induced CCND1/CDK4/CDK6 expression, thereby promoting proliferation and chemoresistance in glioma cells. High expression of NAP1L1 in glioma tissues indicated shorter overall survival in glioma patients.
Collapse
Affiliation(s)
- Zigui Chen
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yingying Xie
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Hongcheng Luo
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rentong Hu
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Huatuo Huang
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Kunxiang Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Chengjian Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Chuanhua Zheng
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| | - Weiyi Fang
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Longyang Liu
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Hao Long
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qisheng Luo
- Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.,Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise 53300, China
| |
Collapse
|
3
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Huang PS, Chang CC, Wang CS, Lin KH. Functional roles of non-coding RNAs regulated by thyroid hormones in liver cancer. Biomed J 2021; 44:272-284. [PMID: 33077406 PMCID: PMC8358202 DOI: 10.1016/j.bj.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown the important role of the non-coding part of human genome RNA (ncRNA) in cancer formation and progression. Among several kinds of ncRNAs, microRNAs (miRNA) play a pivotal role in cancer biology. Accumulating researches have been focused on the importance of non-coding genes in various diseases. In addition to miRNAs, long non-coding RNAs (lncRNAs) have also been extensively documented. Recently, the study of human liver cancer has gradually shifted to these non-coding RNAs that were originally considered "junk". Notably, dysregulated ncRNAs maybe influence on cell proliferation, angiogenesis, anti-apoptosis, and metastasis. Thyroid hormones play critical roles in human development and abnormalities in thyroid hormone levels are associated with various diseases, such as liver cancer. Thyroid hormone receptors (TR) act as ligand-activated nuclear transcription factors to affect multiple functions through the gene-level regulation in the cells and several studies have revealed that thyroid hormone associated with ncRNAs expression. TR actions are complex and tissue- and time-specific, aberrant expression of the various TR isoforms have different effects and are associated with different types of tumor or stages of development. In this review, we discuss various aspects of the research on the thyroid hormones modulated ncRNAs to affect the functions of human liver cells.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Development of a prognostic model based on an immunogenomic landscape analysis of medulloblastoma. Biosci Rep 2021; 41:227393. [PMID: 33345275 PMCID: PMC7791544 DOI: 10.1042/bsr20202907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common central nervous system tumors in children. At present, the vital role of immune abnormalities has been proved in tumorigenesis and progression. However, the immune mechanism in MB is still poorly understood. In the present study, 51 differentially expressed immune-related genes (DE-IRGs) and 226 survival associated immune-related genes (Sur-IRGs) were screened by an integrated analysis of multi-array. Moreover, the potential pathways were enriched by functional analysis, such as ‘cytokine–cytokine receptor interaction’, ‘Ras signaling pathway’, ‘PI3K-Akt signaling pathway’ and ‘pathways in cancer’. Furthermore, 10 core IRGs were identified from DE-IRGs and Sur-IRGs. And the potential regulatory mechanisms of core IRGs were also explored. Additionally, a new prognostic model, including 7 genes (HDGF, CSK, PNOC, S100A13, RORB, FPR1, and ICAM2) based on IRGs, was established by multivariable COX analysis. In summary, our study revealed the underlying immune mechanism of MB. Moreover, we developed a prognostic model associated with clinical characteristics and could reflect the infiltration of immune cells.
Collapse
|
6
|
Gao W, Chen X, Chi W, Xue M. Long non‑coding RNA MKLN1‑AS aggravates hepatocellular carcinoma progression by functioning as a molecular sponge for miR‑654‑3p, thereby promoting hepatoma‑derived growth factor expression. Int J Mol Med 2020; 46:1743-1754. [PMID: 33000222 PMCID: PMC7521589 DOI: 10.3892/ijmm.2020.4722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) have recently gained attention due to their important roles in human cancer types, such as breast and gastric cancer. The present study measured alterations in muskelin 1 antisense RNA (MKLN1‑AS) expression in hepatocellular carcinoma (HCC) and evaluated its clinical value in patients with HCC. Additionally, the current study investigated the effects of MKLN1‑AS on the malignant features of HCC cells. The detailed molecular mechanisms underlying the cancer‑promoting activities of MKLN1‑AS in HCC cells were also elucidated. MKLN1‑AS expression in HCC tissues and cell lines was detected using reverse‑transcription quantitative PCR (RT‑qPCR). Cell Counting Kit‑8 assays and flow cytometry were used to determine the roles of MKLN1‑AS in HCC cell proliferation and apoptosis. Migration and invasion assays, as well as tumor xenograft experiments were conducted to analyze migration and invasion in vitro and tumor growth in vivo, respectively. The interaction among microRNA‑654‑3p (miR‑654‑3p), MKLN1‑AS and hepatoma‑derived growth factor (HDGF) in HCC was investigated using luciferase reporter assay, RNA immunoprecipitation assay, RT‑qPCR, western blotting and rescue experiments. MKLN1‑AS was upregulated in HCC tissues and cell lines, and a high MKLN1‑AS expression was associated with shorter overall survival and disease‑free survival in patients with HCC. Functionally, the knockdown of MKLN1‑AS impaired HCC cell proliferation, migration and invasion, as well as induced cell apoptosis in vitro. Knockdown of MKLN1‑AS expression also inhibited cell proliferation in vivo. The results indicated that MKLN1‑AS functioned as a competing endogenous RNA by sponging miR‑654‑3p in HCC cells. Additionally, miR‑654‑3p targeting of HDGF was positively modulated by MKLN1‑AS, and miR‑654‑3p knockdown partially abrogated this effect. Rescue experiments demonstrated that knockdown of miR‑654‑3p and overexpression of HDGF both abolished MKLN1‑AS knockdown‑induced cellular processes in HCC. In summary, MKLN1‑AS induced pro‑oncogenic effects during HCC progression by serving as a molecular sponge for miR‑654‑3p to increase HDGF expression. Therefore, the MKLN1‑AS/miR‑654‑3p/HDGF axis may offer a novel target for the diagnosis, prognosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Wanjun Gao
- Third Department of Cancer Clinical Medicine Center, Shibo High‑Tech Hospital, Zibo, Shandong 255086, P.R. China
| | - Xiaohua Chen
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong 255400, P.R. China
| | - Wei Chi
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong 255400, P.R. China
| | - Ming Xue
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong 255400, P.R. China
| |
Collapse
|
7
|
Enomoto H, Nakamura H, Nishikawa H, Nishiguchi S, Iijima H. Hepatoma-Derived Growth Factor: An Overview and Its Role as a Potential Therapeutic Target Molecule for Digestive Malignancies. Int J Mol Sci 2020; 21:4216. [PMID: 32545762 PMCID: PMC7352308 DOI: 10.3390/ijms21124216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) was identified in research seeking to find a novel growth factor for hepatoma cells. Subsequently, four HDGF-related proteins were identified, and these proteins are considered to be members of a new gene family. HDGF has a growth-stimulating role, an angiogenesis-inducing role, and a probable anti-apoptotic role. HDGF is ubiquitously expressed in non-cancerous tissues, and participates in organ development and in the healing of damaged tissues. In addition, the high expression of HDGF was reported to be closely associated with unfavorable clinical outcomes in several malignant diseases. Thus, HDGF is considered to contribute to the development and progression of malignant disease. We herein provide a brief overview of the factor and its functions in relation to benign and malignant cells. We also describe its possible role as a target molecule for digestive malignancies.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| | - Hideji Nakamura
- Department of Gastroenterology and Hepatology, Nippon Life Hospital, Osaka 550-0006, Japan;
| | - Hiroki Nishikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Oska 531-0041, Japan;
| | - Hiroko Iijima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine Nishinomiya, Hyogo 663-8501, Japan; (H.N.); (H.I.)
| |
Collapse
|
8
|
Jin S, Bao W, Yang YT, Fu Q, Bai Y, Liu Y. Proteomic analysis of the papillary thyroid microcarcinoma. ANNALES D'ENDOCRINOLOGIE 2019; 80:293-300. [PMID: 31606199 DOI: 10.1016/j.ando.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The present study applied iTRAQ and LC-MS/MS techniques for proteome analysis and compared data between specimens of papillary thyroid microcarcinoma (PTMC) vs appropriate controls, in order to investigate the mechanisms underlying the invasion and metastasis process in PTMC development. MATERIALS AND METHODS Fresh-tissue specimens were collected from 40 patients with thyroid disease who underwent surgical treatment. Specimens were divided into four groups: normal histology (NH; n=8), benign thyroid tumor (BTT; n=10), classic PTMC with lymph node metastasis (PTC-LNM(+); n=11), and classic PTMC without lymph node metastasis (PTC-LNM(-); n=11). Proteomic studies were conducted on PTMC tissue samples without capsule invasion and with tumor diameter ranging from 0.5cm to 1cm, so as to focus the study on PTMC development excluding metastasis. RESULTS A total of 8036 proteins were identified in the four groups. Based on protein function analysis, proteins that might be associated with PTMC invasion and metastasis were screened: alpha-actinin-1, alpha-1-antitrypsin, hepatoma-derived growth factor (HDGF), high-mobility group protein HMGI-C, and carbonic anhydrase 4. In addition, proteins involved in the focal adhesion pathway were examined. Immunohistochemistry confirmed the reliability of the iTRAQ results and the universality of differentially expressed proteins. The data showed that HDGF and high-mobility group protein HMGI-C are up-regulated in PTMC and that the focal adhesion pathway that promotes PTMC LNM is activated. CONCLUSIONS These findings provide insight into the mechanisms underlying PTMC invasion and metastasis.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yun-Tian Yang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Quan Fu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yinbao Bai
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| | - Yousheng Liu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, China.
| |
Collapse
|
9
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Izzi B, Noro F, Cludts K, Freson K, Hoylaerts MF. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes. Int J Mol Sci 2018; 19:ijms19041069. [PMID: 29614055 PMCID: PMC5979289 DOI: 10.3390/ijms19041069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Chromosomal interactions connect distant enhancers and promoters on the same chromosome, activating or repressing gene expression. PEAR1 encodes the Platelet-Endothelial Aggregation Receptor 1, a contact receptor involved in platelet function and megakaryocyte and endothelial cell proliferation. PEAR1 expression during megakaryocyte differentiation is controlled by DNA methylation at its first CpG island. We identified a PEAR1 cell-specific methylation sensitive region in endothelial cells and megakaryocytes that showed strong chromosomal interactions with ISGL20L2, RRNAD1, MRLP24, HDGF and PRCC, using available promoter capture Hi-C datasets. These genes are involved in ribosome processing, protein synthesis, cell cycle and cell proliferation. We next studied the methylation and expression profile of these five genes in Human Umbilical Vein Endothelial Cells (HUVECs) and megakaryocyte precursors. While cell-specific PEAR1 methylation corresponded to variability in expression for four out of five genes, no methylation change was observed in their promoter regions across cell types. Our data suggest that PEAR1 cell-type specific methylation changes may control long distance interactions with other genes. Further studies are needed to show whether such interaction data might be relevant for the genome-wide association data that showed a role for non-coding PEAR1 variants in the same region and platelet function, platelet count and cardiovascular risk.
Collapse
Affiliation(s)
- Benedetta Izzi
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Via dell'Elettronica, 86077 Pozzilli (IS), Italy.
| | - Katrien Cludts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
He S, Wang G, Ni J, Zhuang J, Zhuang S, Wang G, Ye Y, Xia W. MicroRNA-511 Inhibits Cellular Proliferation and Invasion in Colorectal Cancer by Directly Targeting Hepatoma-Derived Growth Factor. Oncol Res 2018; 26:1355-1363. [PMID: 29321086 PMCID: PMC7844599 DOI: 10.3727/096504018x15154094331876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulated microRNA (miRNA) expression is involved in the occurrence and development of colorectal cancer (CRC) through the regulation of various important physiological events. Hence, miRNAs may be used as effective targets for CRC treatment; however, this hypothesis warrants further investigation. miRNA-511 (miR-511) plays vital roles in the progression of different tumor types. However, the expression, exact role, and the mechanisms underlying the regulation of colorectal carcinogenesis and progression by miR-511 remain poorly understood. This study presents that miR-511 expression was decreased in CRC tissues and cell lines compared with that in adjacent nonneoplastic tissues and normal human colon epithelium cell lines, respectively. The enforced expression of miR-511 in CRC cells significantly reduced cell proliferation and invasion. Hepatoma-derived growth factor (HDGF) was mechanically validated as a direct target of miR-511 in CRC. Furthermore, miR-511 was negatively associated with HDGF in CRC tissues. The restored HDGF expression can abrogate the tumor-suppressive roles of miR-511 in CRC cells. More importantly, miR-511 overexpression suppressed the PI3K/AKT signaling pathway in CRC. These results suggest that miR-511 can potentially serve as a therapeutic target for the therapy of patients with CRC.
Collapse
Affiliation(s)
- Saifei He
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Guangdong Wang
- Department of Research and Development, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Suiliang Zhuang
- Department of Oncology, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|