1
|
Dastgheib SA, Bahrami R, Golshan-Tafti M, Danaei M, Azizi S, Shahbazi A, Yeganegi M, Shiri A, Masoudi A, Neamatzadeh H. Decoding bronchopulmonary dysplasia in premature infants through an epigenetic lens. Front Med (Lausanne) 2025; 12:1531169. [PMID: 40248086 PMCID: PMC12003331 DOI: 10.3389/fmed.2025.1531169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
This review provides a comprehensive overview of the evolving insights into the epigenetic mechanisms associated with bronchopulmonary dysplasia (BPD). It specifically highlights the roles of DNA methylation, histone modifications, and RNA regulation in the development of BPD in premature infants. BPD results from complex interactions among genetic factors, environmental exposures, and neonatal stressors. Key findings suggest that intrauterine hypoxia, hyperoxia, and nutrition can lead to epigenetic alterations, affecting gene expression and methylation, which may serve as biomarkers for early BPD detection. RUNX3 is identified as a critical transcription factor influencing lung development and inflammation, while changes in DNA methylation and histone dynamics in cord blood are linked to immune dysregulation associated with BPD. The role of m6A RNA methylation regulators from the IGF2BP family affects mRNA stability and gene expression relevant to BPD. Additionally, specific histones and microRNAs, particularly from the miR-17∼92 cluster, are implicated in pulmonary development and vascular regulation. Long non-coding RNAs (lncRNAs), such as MALAT1, also play a role in gene regulation via competitive endogenous RNA networks, indicating their potential as biomarkers and therapeutic targets. The interplay of these epigenetic mechanisms underscores the need for further research to develop targeted interventions aimed at reducing BPD severity and enhancing health outcomes for at-risk neonates.
Collapse
Affiliation(s)
- Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahsa Danaei
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirmasoud Shiri
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Masoudi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Bao T, Zhu H, Ma M, Sun T, Hu J, Li J, Cao L, Cheng H, Tian Z. Implication of m6A Methylation Regulators in the Immune Microenvironment of Bronchopulmonary Dysplasia. Biochem Genet 2024; 62:5129-5143. [PMID: 38393623 DOI: 10.1007/s10528-024-10664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/01/2024] [Indexed: 02/25/2024]
Abstract
N6-methyladenosine (m6A) regulates gene expression and governs many important biological processes. However, the function of m6A in the development of bronchopulmonary dysplasia (BPD) remains poorly characterized. Thus, the purpose of this investigation was to evaluate the effects of m6A RNA methylation regulators on the development of BPD. BPD-related transcriptome data were downloaded from the GEO database. Differentially expressed m6A methylation regulators between BPD and control group were identified. Consensus clustering was conducted for the classification of BPD and association between clusters and BPD phenotypes were explored. Analysis of differentially expressed genes (DEGs) and immune-related DEGs was performed. The GSEA, GO and KEGG analyses were used to interpret the functional enrichments. The composition of immune cell subtypes in BPD subsets was predicted by CIBERSORT analysis. Compared with the control group, expression of most m6A regulators showed significant alteration, especially for IGF2BP1/2/3. BPD was classified into 2 subsets, and cluster 1 was correlated with severe BPD. Furthermore, the results of functional enrichment analyses showed a disturbed immune-related signaling pathway. Based on CIBERSORT analysis, we found that the proportion of immune cell subsets changed between cluster 1 and cluster 2. Our study revealed the implication of m6A methylation regulators in the development of BPD, which might provide a novel insight for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Haiyan Zhu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Tingting Sun
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingjing Hu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - JingYan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
3
|
Lun Y, Hu J, Zuming Y. Circular RNAs expression profiles and bioinformatics analysis in bronchopulmonary dysplasia. J Clin Lab Anal 2022; 37:e24805. [PMID: 36514862 PMCID: PMC9833990 DOI: 10.1002/jcla.24805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) has long been considered the most challenging chronic lung disease for neonatologists and researchers due to its complex pathological mechanisms and difficulty in prediction. Growing evidence indicates that BPD is associated with the dysregulation of circular RNAs (circRNAs). Therefore, we aimed to explore the expression profiles of circRNAs and investigate the underlying molecular network associated with BPD. METHODS Peripheral blood was collected from very-low-birth-weight (VLBW) infants at 5-8 days of life to extract PBMCs. Microarray analysis and qRT-PCR tests were performed to determine the differentially expressed circRNAs (DEcircRNAs) between BPD and non-BPD VLBW infants. Simultaneous analysis of GSE32472 was conducted to obtain differentially expressed mRNAs (DEmRNA) from BPD infants. The miRNAs were predicted by DEcircRNAs and DEmRNAs of upregulated, respectively, and then screened for overlapping ones. GO and KEGG analysis was performed following construction of the competing endogenous RNA regulatory network (ceRNA) for further investigation. RESULTS A total of 65 circRNAs (52 upregulated and 13 downregulated) were identified as DEcircRNAs between the two groups (FC >2.0 and p.adj <0.05). As a result, the ceRNA network was constructed based on three upregulated DEcircRNAs validated by qRT-PCR (hsa_circ_0007054, hsa_circ_0057950, and hsa_circ_0120151). Bioinformatics analysis indicated these DEcircRNAs participated in response to stimulus, IL-1 receptor activation, neutrophil activation, and metabolic pathways. CONCLUSIONS In VLBW infants with a high risk for developing BPD, the circRNA expression profiles in PBMCs were significantly altered in the early post-birth period, suggesting immune dysregulation caused by infection and inflammatory response already existed.
Collapse
Affiliation(s)
- Yu Lun
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Junlong Hu
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Yang Zuming
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| |
Collapse
|
4
|
Kimble A, Robbins ME, Perez M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from 'Omics' Studies. Antioxidants (Basel) 2022; 11:2380. [PMID: 36552588 PMCID: PMC9774798 DOI: 10.3390/antiox11122380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review 'omics' data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional 'omics' studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Ashley Kimble
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mary E. Robbins
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
6
|
Zhang L, Wang P, Shen Y, Huang T, Hu X, Yu W. Mechanism of lncRNA H19 in Regulating Pulmonary Injury in Hyperoxia-Induced Bronchopulmonary Dysplasia Newborn Mice. Am J Perinatol 2022; 39:1089-1096. [PMID: 33285606 DOI: 10.1055/s-0040-1721498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is a pulmonary injury related to inflammation and is a major cause of premature infant death. Long noncoding RNAs (lncRNAs) are important regulators in pulmonary injury and inflammation. We investigated the molecular mechanism of lncRNA H19 in pulmonary injury and inflammation in hyperoxia (Hyp)-induced BPD mice. STUDY DESIGN The BPD newborn mouse model was established and intervened with H19 to evaluate the pathologic conditions and radial alveolar count (RAC) in lung tissues of mice in the room air (RA) and Hyp group on the 4th, 7th, and 14th days after birth. The levels of BPD-related biomarkers vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), and surfactant protein C (SPC) in lung tissues were detected on the 14th day after birth. The expression of and relationships among H19 and miR-17, miR-17, and STAT3 were detected and verified. Levels of interleukin (IL)-6, IL-1β, p-STAT3, and STAT3 levels in mouse lung tissues were detected on the 14th day after birth. RESULTS Hyp-induced mice showed increased alveolar diameter, septum, and hyperemia and inflammatory cell infiltration, upregulated H19, decreased overall number and significantly reduced RAC on the 7th and 14th days after birth, which were reversed in the si-H19-treated mice. VEGF was upregulated and TGF-β1 and SPC was decreased in si-H19-treated mice. Moreover, H19 competitively bound to miR-17 to upregulate STAT3. IL-6 and IL-1β expressions and p-STAT3 and STAT3 levels were downregulated after inhibition of H19. CONCLUSION Downregulated lncRNA H19 relieved pulmonary injury via targeting miR-17 to downregulate STAT3 and reduced inflammatory response caused by p-STAT3 in BPD newborn mice. KEY POINTS · lncRNA H19 was highly expressed in Hyp-induced BPD newborn mice.. · si-H19 relieved pulmonary injury in Hyp-induced BPD newborn mice.. · si-H19 upregulated miR-17 and downregulated STAT3 expression..
Collapse
Affiliation(s)
- Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ping Wang
- Department of Hand and Foot Surgery, Nanchang Fifth Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Yanhong Shen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Tao Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyun Hu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Yu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
7
|
Xi Y, Wang Y. Insight Into the Roles of Non-coding RNA in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:761724. [PMID: 34805228 PMCID: PMC8602187 DOI: 10.3389/fmed.2021.761724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly occurring in premature infants, and its pathological manifestations are alveolar hypoplasia and dysregulation of pulmonary vasculature development. The effective treatment for BPD has not yet been established. Non-coding RNAs, including microRNAs and long non-coding RNAs do not encode proteins, but can perform its biological functions at the RNA level. Non-coding RNAs play an important role in the incidence and development of BPD by regulating the expression of genes related to proliferation, apoptosis, angiogenesis, inflammation and other cell activities of alveolar epithelial cells and vascular endothelial cells. Here we summarize the role of non-coding RNAs in BPD, which provides possible molecular marker and therapeutic target for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Tenascin-C expression in the lymph node pre-metastatic niche in muscle-invasive bladder cancer. Br J Cancer 2021; 125:1399-1407. [PMID: 34564696 PMCID: PMC8575937 DOI: 10.1038/s41416-021-01554-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Markers of stromal activation at future metastatic sites may have prognostic value and may allow clinicians to identify and abolish the pre-metastatic niche to prevent metastasis. In this study, we evaluate tenascin-C as a marker of pre-metastatic niche formation in bladder cancer patient lymph nodes. METHODS Tenascin-C expression in benign lymph nodes was compared between metastatic (n = 20) and non-metastatic (n = 27) patients with muscle-invasive bladder cancer. Urinary extracellular vesicle (EV) cytokine levels were measured with an antibody array to examine potential correlation with lymph node inflammation. The ability of bladder cancer EVs to activate primary bladder fibroblasts was assessed in vitro. RESULTS Lymph node tenascin-C expression was elevated in metastatic patients vs. non-metastatic patients, and high expression was associated with worse survival. Urinary EVs contained four cytokines that were positively correlated with lymph node tenascin-C expression. Bladder cancer EVs induced tenascin-C expression in fibroblasts in an NF-κB-dependent manner. CONCLUSIONS Tenascin-C expression in regional lymph nodes may be a good predictor of bladder cancer metastasis and an appropriate imaging target. It may be possible to interrupt pre-metastatic niche formation by targeting EV-borne tumour cytokines or by targeting tenascin-C directly.
Collapse
|
9
|
Yangi R, Huang H, Zhou Q. Long noncoding RNA MALAT1 sponges miR-129-5p to regulate the development of bronchopulmonary dysplasia by increasing the expression of HMGB1. J Int Med Res 2021; 48:300060520918476. [PMID: 32397779 PMCID: PMC7223211 DOI: 10.1177/0300060520918476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the function and mechanism of long noncoding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in bronchopulmonary dysplasia. METHODS Alveolar epithelial cell line BEAS-2B was used as the cell model. The role of MALAT1 and microRNA miR-129-5p in regulating cellular viability and migration were examined by using the CCK-8 and Transwell assays, respectively, in vitro. The luciferase reporter assay and real-time (RT)-PCR were performed to confirm that miR-129-5p was a target of MALAT1. ELISA was conducted to validate MALAT1 and show that miR-129-5p regulated the gene encoding high-mobility group protein 1 (HMGB1). RESULTS Overexpression of MALAT1 significantly promoted cellular viability, whereas miR-129-5p had the opposite effect. miR-129-5p was shown to be a target of MALAT1, and HMGB1 could be upregulated by MALAT1 overexpression or miR-129-5p inhibition. CONCLUSION MALAT1 reduced the expression of miR-129-5p, promoting the viability of cells and blocking the development of bronchopulmonary dysplasia. In addition, MALAT1 increased the expression of HMGB1, which contributed to inflammation as the disease progressed.
Collapse
Affiliation(s)
- Rongwe Yangi
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Huafei Huang
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Qingnv Zhou
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| |
Collapse
|
10
|
Interleukin-24 as a Pulmonary Target Cytokine in Bronchopulmonary Dysplasia. Cell Biochem Biophys 2021; 79:311-320. [PMID: 33683657 DOI: 10.1007/s12013-021-00968-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
The proliferation of fetal alveolar type II cells (FATIICs) was impaired in bronchopulmonary dysplasia (BPD), which is modulated by hyperoxia and inflammatory response. Interleukin 24 (IL-24), a cytokine produced by certain cell types, plays an essential role in inflammation and host protection against infection. However, the ability of FATIICs to produce IL-24 remains unclear, and the role of IL-24 in BPD progression is yet to be determined. With reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay, the authors evaluated whether FATIICs produce IL-24 in physiological conditions. The authors quantified IL-24 expression in the lungs of newborn rat pups exposed to hyperoxia (70% oxygen) and in FATIICs isolated on embryonic day 19 that were exposed to 95% oxygen or lipopolysaccharide (LPS). The role of IL-24 in FATIICs, cell proliferation, cell apoptosis, and cell cycle were further evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometric analysis. Also, they assessed caspase-3 and SOCS3 mRNA in IL-24 siRNA-treated cells by using RT-qPCR. During culture, IL-24 mRNA and protein levels in FATIICs gradually decreased with FATIIC differentiation. IL-24 expression increased significantly in rat lungs exposed to hyperoxia and FATIICs exposed to oxygen or LPS. Recombinant IL-24 enhanced cell proliferation by decreasing the proportion of apoptotic cells and increasing the proportion of cells in the S phase. The IL-24 siRNA-treated cells expressed more caspase-3 mRNA. Furthermore, suppressor of cytokine signaling 3 (SOCS3) mRNA was significantly decreased in rats and FATIICs exposed to oxygen, whereas it dramatically increased in FATIICs exposed to LPS. The IL-24 siRNA-treated cells expressed more SOCS3 mRNA. These studies suggest IL-24 is a pulmonary target cytokine in BPD, and may possibly regulate SOCS3 in oxidative stress and inflammation of the lung.
Collapse
|
11
|
Ji L, Liu Z, Dong C, Wu D, Yang S, Wu L. LncRNA CASC2 targets CAV1 by competitively binding with microRNA-194-5p to inhibit neonatal lung injury. Exp Mol Pathol 2020; 118:104575. [PMID: 33212124 DOI: 10.1016/j.yexmp.2020.104575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) are vital regulators of different biological processes during bronchopulmonary dysplasia (BPD). This study was conducted to probe the biological roles of lncRNA CASC2 in the pathogenesis of BPD and neonatal lung injury. Firstly, a hyperoxia-induced mouse model with BPD was established. LncRNAs with differential expression in lung tissues of normal and BPD mice were analyzed by microarray. An adenovirus vector overexpressing CASC2 was constructed and its functions on BPD symptoms in model mice were analyzed. Gain- and loss-of function studies of CASC2 were performed in a bronchial epithelial cell line BEAS-2B to determine its role in cell apoptosis and proliferation under normoxic and hyperoxic conditions. The downstream mechanical molecules of lncRNA CASC2 were predicted on bioinformatics systems and confirmed by luciferase assays. The functional interactions among lncRNA CASC2, miR-194-5p, and CAV1 in BPD were determined by rescue experiments. Consequently, lncRNA CASC2 was found to be poorly expressed in BPD mice. Besides, overexpressed CASC2 was found to relieve the symptoms of BPD in neonatal mice and suppress apoptosis as well as promote proliferation in hyperoxia-induced BEAS-2B cells. Importantly, CASC2 was found to regulate CAV1 expression by competitively binding to miR-194-5p and downregulate the activity of the TGF-β1 signaling pathway, thereby suppressing lung injury. Either miR-194-5p upregulation or CAV1 downregulation blocked the roles of CASC2. To sum up, this study evidenced that CASC2 alleviates hyperoxia-induced lung injury in mouse and cell models with the involvement of a miR-194-5p-CAV1 crosstalk and the TGF-β1 inactivation.
Collapse
Affiliation(s)
- Lili Ji
- Department of Paediatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, PR China
| | - Zunjie Liu
- Department of Neonatology, Beijing Obsterics and Gynecology Hospital, Capital Medical University, Beijing 100026, PR China
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Dongping Wu
- Department of Neonatology, Yiwu Central Hospital, Yiwu 322000, Zhejiang, PR China
| | - Shimei Yang
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, Zhejiang, PR China
| | - Limei Wu
- Department of Pediatrics, Yiwu Maternity and Children Hospital, Yiwu 322000, Zhejiang, PR China.
| |
Collapse
|
12
|
Chen JH, Feng DD, Chen YF, Yang CX, Juan CX, Cao Q, Chen X, Liu S, Zhou GP. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. J Cell Mol Med 2020; 24:10478-10492. [PMID: 32812343 PMCID: PMC7521324 DOI: 10.1111/jcmm.15661] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Mao X, Guo Y, Qiu J, Zhao L, Xu J, Yin J, Lu K, Zhang M, Cheng R. Next-generation sequencing to investigate circular RNA profiles in the peripheral blood of preterm neonates with bronchopulmonary dysplasia. J Clin Lab Anal 2020; 34:e23260. [PMID: 32091150 PMCID: PMC7370752 DOI: 10.1002/jcla.23260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background Circular RNAs (circRNAs) are emerging noncoding RNAs that are involved in many biological processes and diseases. The expression profile of circRNAs in preterm neonates with bronchopulmonary dysplasia (BPD) remains unresolved. Methods In BPD infants, peripheral venous blood was drawn and circRNAs were extracted and sequenced by next‐generation sequencing. The levels of the selected circRNAs were measured by real‐time quantitative reverse transcription PCR. Results Among thousands of circRNAs, 491 circRNAs were significantly changed. Among the top 10 changed circRNAs, hsa_circ_0003122, hsa_circ_0003357, hsa_circ_0009983, hsa_circ_0003037, and hsa_circ_0009256 were significantly increased, while hsa_circ_0014932, hsa_circ_0015109, hsa_circ_0017811, hsa_circ_0020588, and hsa_circ_0015066 were significantly decreased. These altered circRNAs are involved in complicated biological functions and signaling pathways. Additionally, hsa_circ_0005577 (hsa_circ_FANCL), which was significantly increased in the moderate‐to‐severe BPD subjects, was correlated with oxygenation therapy. Conclusion These results suggest that an aberrant circRNA profile in the peripheral blood of BPD infants might be important in BPD pathogenesis.
Collapse
Affiliation(s)
- Xiaonan Mao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Qiu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiao Yin
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Keyu Lu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Department of Immunology, National Health Commission of Key Lab of Antibody Technology, Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Cheng H, Wang H, Wu C, Zhang Y, Bao T, Tian Z. Proteomic analysis of sex differences in hyperoxic lung injury in neonatal mice. Int J Med Sci 2020; 17:2440-2448. [PMID: 33029086 PMCID: PMC7532490 DOI: 10.7150/ijms.42073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Sex-specific differences in the severity of bronchopulmonary dysplasia (BPD) are due to different susceptibility to hyperoxic lung injury, but the mechanism is unclear. In this study, neonatal male and female mouse pups (C57BL/6J) were exposed to hyperoxia and lung tissues were excised on postnatal day 7 for histological analysis and tandem mass tags proteomic analysis. We found that the lung sections from the male mice following postnatal hyperoxia exposure had increased alveolar simplification, significant aberrant pulmonary vascularization and arrest in angiogenesis compared with females. Comparison of differentially expressed proteins revealed 377 proteins unique to female and 425 unique to male as well as 750 proteins in both male and female. Bioinformatics analysis suggested that several differentially expressed proteins could contribute to the differences in sex-specific susceptibility to hyperoxic lung injury. Our results may help identify sex-specific biomarkers and therapeutic targets of BPD.
Collapse
Affiliation(s)
- Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Huifang Wang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Chantong Wu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Yuan Zhang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; the Pediatric Diagnosis and Treatment Respiratory Key Laboratory of Huai'an, Huai'an 223300, China
| |
Collapse
|
15
|
Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, Collins CT, Makrides M, Gibson RA, Rogers GB, Lynn DJ. Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems 2019; 4:e00484-19. [PMID: 31662429 PMCID: PMC6819732 DOI: 10.1128/msystems.00484-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically.IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Damian P Drew
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Chloe Douglas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lex E X Leong
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Max Moldovan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miriam Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Naomi Fink
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Irmeli Penttila
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
16
|
Philpot PA, Bhandari V. Predicting the likelihood of bronchopulmonary dysplasia in premature neonates. Expert Rev Respir Med 2019; 13:871-884. [PMID: 31340666 DOI: 10.1080/17476348.2019.1648215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Bronchopulmonary dysplasia (BPD) is the most common serious pulmonary morbidity in premature infants. Despite ongoing advances in neonatal care, the incidence of BPD has not improved. A potential explanation for this phenomenon is the limited ability for accurate early prediction of the risk of BPD. BPD continues to represent a therapeutic challenge and no single effective therapy exists for this condition. Areas covered: Here, we review risk factors of BPD derived from clinical data, biological fluid biomarkers, respiratory management data, and scientific advancements using 'omics' technologies, and their ability to predict the pathogenesis of BPD in preterm neonates. Risk factors and biomarkers were identified via literature search with a focus on the last 5 years of data. Expert opinion: The most accurate predictive tools utilize risk factors that encompass a variety of categories. Numerous predictive models have been proposed but suffer from a lack of adequate validation. An ideal model should include multiple, easily measurable variables validated across a heterogeneous population. In addition to evaluating recent BPD prediction models, we suggest approaches to enhance future models.
Collapse
Affiliation(s)
- Patrick A Philpot
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Thomas Jefferson University College of Medicine, Nemours/Alfred I. DuPont Hospital for Children , Philadelphia , PA , USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children , Philadelphia , PA , USA
| |
Collapse
|
17
|
Wang J, Yin J, Wang X, Liu H, Hu Y, Yan X, Zhuang B, Yu Z, Han S. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. J Cell Biochem 2019; 120:9369-9380. [PMID: 30802330 DOI: 10.1002/jcb.28212] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
New perinatal care technologies have improved the survival rate of preterm neonates, but the prevalence of bronchopulmonary dysplasia (BPD), one of the most intractable problems in neonatal intensive care unit (NICU), remains unchanged. In present study, high-throughput sequencing (HTS) was performed to detect the expression profiles of long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in hyperoxia-induced BPD mouse model. Significant differentially expressed RNAs were selected and clustered between the BPD group and the control group. The results revealed that expressions of 1778 lncRNAs, 1240 mRNAs, 97 circRNAs, and 201 miRNAs were significantly altered in the BPD group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to predict the potential functions of differentially expressed RNAs. lncRNA-mRNA and circRNA-miRNA coexpression networks were constructed to detect their association with the pathogenesis of BPD. Our study provides a systematic perspective on the potential function of RNAs during BPD.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China.,Department of Pediatrics, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jing Yin
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xingyun Wang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Heng Liu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yin Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Bin Zhuang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
19
|
Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol 2018; 315:L734-L741. [PMID: 30047283 DOI: 10.1152/ajplung.00183.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, is associated with long-term morbidities, including pulmonary hypertension (PH). Importantly, hyperoxia causes BPD and PH; however, the underlying mechanisms remain unclear. Herein, we performed high-throughput transcriptomic and proteomic studies using a clinically relevant murine model of BPD with PH. Neonatal wild-type C57BL6J mice were exposed to 21% oxygen (normoxia) or 70% oxygen (hyperoxia) during postnatal days (PNDs) 1-7. Lung tissues were collected for proteomic and genomic analyses on PND 7, and selected genes and proteins were validated by real-time quantitative PCR and immunoblotting analysis, respectively. Hyperoxia exposure dysregulated the expression of 344 genes and 21 proteins. Interestingly, hyperoxia downregulated genes involved in neuronal development and maturation in lung tissues. Gene set enrichment and gene ontology analyses identified apoptosis, oxidoreductase activity, plasma membrane integrity, organ development, angiogenesis, cell proliferation, and mitophagy as the predominant processes affected by hyperoxia. Furthermore, selected deregulated proteins strongly correlated with the expression of specific genes. Collectively, our results identified several potential therapeutic targets for hyperoxia-mediated BPD and PH in infants.
Collapse
Affiliation(s)
- Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Vashisht Y N Gopal
- Department of Melanoma Medical Oncology and Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Joseph L Hagan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
20
|
Alvira CM, Morty RE. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 2017; 190:27-37. [PMID: 29144252 PMCID: PMC5726414 DOI: 10.1016/j.jpeds.2017.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Rory E. Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center campus of the German Center for Lung Research, Giessen, Germany,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
21
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|