1
|
de Queiroz Eskuarek Melo NM, Comar JF, de Sá-Nakanishi AB, Peralta RM, Bracht L, Bracht A. Short-term effects of sodium arsenite (AsIII) and sodium arsenate (AsV) on carbohydrate metabolism in the perfused rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104397. [PMID: 38401815 DOI: 10.1016/j.etap.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| |
Collapse
|
2
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
3
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Wang YL, Lin SX, Wang Y, Liang T, Jiang T, Liu P, Li XY, Lang DQ, Liu Q, Shen CY. p-Synephrine ameliorates alloxan-induced diabetes mellitus through inhibiting oxidative stress and inflammation via suppressing the NF-kappa B and MAPK pathways. Food Funct 2023; 14:1971-1988. [PMID: 36723106 DOI: 10.1039/d2fo03003a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress and inflammation play important roles in the development of diabetes mellitus. p-Synephrine, the primary pharmacologically active protoalkaloid in Citrus species, has been popularly consumed as a dietary supplement for weight loss management. However, the effects of p-synephrine on diabetes mellitus and the action mechanisms have not been clearly elucidated. In this study, the in vitro antioxidant effects of p-synephrine were evaluated. The data showed that p-synephrine treatment exhibited significant scavenging effects against DPPH, ABTS and OH radicals and showed high reducing power. Diabetic mice were developed by alloxan injection, followed by p-synephrine administration to investigate its hypoglycemic effects in vivo. The results showed that p-synephrine intervention significantly prevented alloxan-induced alteration in body weight, organ indexes, serum uric acid content and serum creatinine content. Meanwhile, p-synephrine application significantly improved the lipid profiles, superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) contents in the serum and kidneys of diabetic mice and reduced the malondialdehyde (MDA) content in the serum of diabetic mice. Further assays suggested that p-synephrine treatment improved alloxan-induced decreases of glucose tolerance and insulin sensitivity. Also, p-synephrine supplementation altered histopathological changes in the kidneys and interscapular brown adipose tissues in diabetic mice. In addition, p-synephrine administration inhibited renal inflammation through suppressing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) gene expression levels, as well as CD45 expression levels. The anti-inflammatory effects were probably involved in the regulation of nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation. In conclusion, p-synephrine application significantly ameliorated alloxan-induced diabetes mellitus by inhibiting oxidative stress via suppressing the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Peng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Deng-Qin Lang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Chun-Yan Shen
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| |
Collapse
|
5
|
Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Photochem Photobiol Sci 2023; 22:279-302. [PMID: 36152272 DOI: 10.1007/s43630-022-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 μM. Additionally, TBO (40 μM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.
Collapse
|
6
|
Wang Q, Chen J, Zhang Y, Xu D, Wu H, Lin P, He L, Qin Z, Yao Z. Metabolic profile and potential mechanisms of Wendan decoction on coronary heart disease by ultra-high-performance quadrupole time of flight-mass spectrometry combined with network pharmacology analysis. J Sep Sci 2023; 46:e2200456. [PMID: 36300722 DOI: 10.1002/jssc.202200456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 01/11/2023]
Abstract
Wendan decoction, a well-known classical traditional Chinese medicine prescription, has been widely used in the clinical application of coronary heart disease for thousands of years. However, due to a lack of research on the overall metabolism of Wendan decoction, the bioavailable components responsible for the therapeutic effects remain unclear, hindering the revelation of its mechanisms against coronary heart disease. Consequently, an efficient joint research pattern combined with characterization of the metabolic profile and network pharmacology analysis was proposed. As a result, a total of 172 Wendan decoction-related xenobiotics (57 prototypes and 115 metabolites) were detected based on the exploration of the typical metabolic pathways of representative pure compounds in vivo, describing their multi-component metabolic characteristics comprehensively. Subsequently, an integrated network of "herbs-bioavailable compounds-coronary heart disease targets-pathways-therapeutic effects" was constructed, and its seven compounds were finally screened out as the key components acting on five main targets of coronary heart disease. Overall, this work not only provided a crucial biological foundation for interpreting the effective components and action mechanisms of Wendan decoction on coronary heart disease but also showed a reference value for revealing the bioactive components of traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yezi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, P. R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, P. R. China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Zifei Qin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Silva LCL, de Souza GH, Pateis VDO, Ames-Sibin AP, Silva BP, Bracht L, Comar JF, Peralta RM, Bracht A, Sá-Nakanishi AB. Inhibition of Gluconeogenesis by Boldine in the Perfused Liver: Therapeutical Implication for Glycemic Control. Int J Hepatol 2023; 2023:1283716. [PMID: 37056327 PMCID: PMC10089784 DOI: 10.1155/2023/1283716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
The alkaloid boldine occurs in the Chilean boldo tree (Peumus boldus). It acts as a free radical scavenger and controls glycemia in diabetic rats. Various mechanisms have been proposed for this effect, including inhibited glucose absorption, stimulated insulin secretion, and increased expression of genes involved in glycemic control. Direct effects on glucose synthesis and degradation were not yet measured. To fill this gap, the present study is aimed at ensuring several metabolic pathways linked to glucose metabolism (e.g., gluconeogenesis) in the isolated perfused rat liver. In order to address mechanistic issues, energy transduction in isolated mitochondria and activities of gluconeogenic key enzymes in tissue preparations were also measured. Boldine diminished mitochondrial ROS generation, with no effect on energy transduction in isolated mitochondria. It inhibited, however, at least three enzymes of the gluconeogenic pathway, namely, phosphoenolpyruvate carboxykinase, fructose-bisphosphatase-1, and glucose 6-phosphatase, starting at concentrations below 50 μM. Consistently, in the perfused liver, boldine decreased lactate-, alanine-, and fructose-driven gluconeogenesis with IC50 values of 71.9, 85.2, and 83.6 μM, respectively. Conversely, the compound also increased glycolysis from glycogen-derived glucosyl units. The hepatic ATP content was not affected by boldine. It is proposed that the direct inhibition of hepatic gluconeogenesis by boldine, combined with the increase of glycolysis, could be an important event behind the diminished hyperglycemia observed in boldine-treated diabetic rats.
Collapse
Affiliation(s)
- Laís Cristina Lima Silva
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Gustavo Henrique de Souza
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Vanesa de Oliveira Pateis
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Ana Paula Ames-Sibin
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Beatriz Paes Silva
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Jurandir Fernando Comar
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
8
|
Yang W, Liu M, Chen B, Ning J, Wang K, Cai Y, Yang D, Zheng G. Comparative analysis of chemical constituents in Citri Exocarpium Rubrum, Citri Reticulatae Endocarpium Alba, and Citri Fructus Retinervus. Food Sci Nutr 2022; 10:3009-3023. [PMID: 36171768 PMCID: PMC9469855 DOI: 10.1002/fsn3.2897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Citri Exocarpium Rubrum (CER), Citri Reticulatae Endocarpium Alba (CREA), and Citri Fructus Retinervus (CFR) are used as medicine and food, which derive from three different parts of the pericarp of Citrus reticulata Blanco through natural drying. To systematically investigate similarities and differences in phytochemicals about the three herbs, a series of analytic approaches were applied for the qualitative and quantitative analysis of chemical constituents in them. The results indicated a total of 48 volatile compounds were determined representing 99.92% of the total relative content of CER extracts, including 24 alkenes, 11 alcohols, 6 aldehydes, 2 ketones, and 2 phenols, while volatile compounds were not extracted from CREA and CFR. CER was abundant in volatile components that mainly existed in the oil gland. And a total of 32, 35, and 28 nonvolatile compounds were identified from CER, CREA, and CFR extracts, respectively. The total content of flavonoids and phenolic, and hesperidin in CFR was the highest, followed by CREA and CER. Conversely, CER was a rich source of polymethoxyflavones (PMFs), and the total polymethoxyflavone content (TPMFC), the content of nobiletin, 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), tangeretin, and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone (5-HPMF) in CREA and CFR were extremely low. Besides, CER and CREA had a higher concentration of synephrine than CFR. The phytochemicals of CER, CREA, and CFR were significantly different, which might provide chemical evidence for the comparative pharmacological activities' research and rational application of them.
Collapse
Affiliation(s)
- Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Mengshi Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., LtdJiangmenChina
| | - Jinrong Ning
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Kanghui Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Depo Yang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Abstract
Abstract
There is a number of diseases for which, scientists are constantly looking for a promising new treatments. Isolation of novel substances with biological activity from plants gives hope for its use in treatment. In this review, we focused on the biological activity of p-synephrine (4-(2-aminoethyl)phenol) which was previously confirmed during both in vitro and in vivo tests. The main part of the review is dedicated to the anti-obesity activity of p-synephrine, as obesity is a disease of contemporary civilization. However, synephrine also possesses anti-diabetic, anti-inflammatory and antidepressant activity and it is confirmed to be a hypotensive agent in portal hypertension. The review also emphasize that, based on current knowledge, the use of p-synephrine appears to be exceedingly safe with only limited range of side effects. Therefore, it seems that this substance may be of great importance in the pharmacotherapy of many disease states and further research is necessary.
Collapse
|
10
|
de Souza BTL, Klosowski EM, Mito MS, Constantin RP, Mantovanelli GC, Mewes JM, Bizerra PFV, da Silva FSI, Menezes PVMDC, Gilglioni EH, Utsunomiya KS, Marchiosi R, Dos Santos WD, Ferrarese-Filho O, Caetano W, de Souza Pereira PC, Gonçalves RS, Constantin J, Ishii-Iwamoto EL, Constantin RP. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects. Toxicology 2021; 455:152766. [PMID: 33775737 DOI: 10.1016/j.tox.2021.152766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Azure A (AA) is a cationic molecule of the class of phenothiazines that has been applied in vitro as a photosensitising agent in photodynamic antimicrobial chemotherapy. It is a di-demethylated analogue of methylene blue (MB), which has been demonstrated to be intrinsically and photodynamically highly active on mitochondrial bioenergetics. However, as far as we know, there are no studies about the photodynamic effects of AA on mammalian mitochondria. Therefore, this investigation aimed to characterise the intrinsic and photodynamic acute effects of AA (0.540 μM) on isolated rat liver mitochondria, isolated hepatocytes, and isolated perfused rat liver. The effects of AA were assessed by evaluating several parameters of mitochondrial bioenergetics, oxidative stress, cell viability, and hepatic energy metabolism. The photodynamic effects of AA were assessed under simulated hypoxic conditions, a suitable way for mimicking the microenvironment of hypoxic solid tumour cells. AA interacted with the mitochondria and, upon photostimulation (10 min of light exposure), produced toxic amounts of reactive oxygen species (ROS), which damaged the organelle, as demonstrated by the high levels of lipid peroxidation and protein carbonylation. The photostimulated AA also depleted the GSH pool, which could compromise the mitochondrial antioxidant defence. Bioenergetically, AA photoinactivated the complexes I, II, and IV of the mitochondrial respiratory chain and the F1FO-ATP synthase complex, sharply inhibiting the oxidative phosphorylation. Upon photostimulation (10 min of light exposure), AA reduced the efficiency of mitochondrial energy transduction and oxidatively damaged lipids in isolated hepatocytes but did not decrease the viability of cells. Despite the useful photobiological properties, AA presented noticeable dark toxicity on mitochondrial bioenergetics, functioning predominantly as an uncoupler of oxidative phosphorylation. This harmful effect of AA was evidenced in isolated hepatocytes, in which AA diminished the cellular ATP content. In this case, the cells exhibited signs of cell viability reduction in the presence of high AA concentrations, but only after a long time of incubation (at least 90 min). The impairments on mitochondrial bioenergetics were also clearly manifested in intact perfused rat liver, in which AA diminished the cellular ATP content and stimulated the oxygen uptake. Consequently, gluconeogenesis and ureogenesis were strongly inhibited, whereas glycogenolysis and glycolysis were stimulated. AA also promoted the release of cytosolic and mitochondrial enzymes into the perfusate concomitantly with inhibition of oxygen consumption. In general, the intrinsic and photodynamic effects of AA were similar to those of MB, but AA caused some distinct effects such as the photoinactivation of the complex IV of the mitochondrial respiratory chain and a diminution of the ATP levels in the liver. It is evident that AA has the potential to be used in mitochondria-targeted photodynamic therapy, even under low oxygen concentrations. However, the fact that AA directly disrupts mitochondrial bioenergetics and affects several hepatic pathways that are linked to ATP metabolism, along with its ability to perturb cellular membranes and its little potential to reduce cell viability, could result in significant adverse effects especially in long-term treatments.
Collapse
Affiliation(s)
- Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Vinicius Moreira da Costa Menezes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Cesar de Souza Pereira
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus in Photodynamic System, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
11
|
Ruiz-Moreno C, Del Coso J, Giráldez-Costas V, González-García J, Gutiérrez-Hellín J. Effects of p-Synephrine during Exercise: A Brief Narrative Review. Nutrients 2021; 13:nu13010233. [PMID: 33467423 PMCID: PMC7830131 DOI: 10.3390/nu13010233] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
The p-synephrine is the principal phytochemical found in bitter orange (Citrus aurantium). This substance is widely included in dietary supplements for weight loss/body fat reduction due to its potential benefits of increasing fat oxidation. For years, p-synephrine-containing dietary supplements have been marketed without proper knowledge of their true effectiveness to enhance fat utilization, especially when combined with exercise. However, the effects of p-synephrine on fat oxidation during exercise have been investigated in the last few years. The aim of the current discussion is to summarize the evidence on the effects of p-synephrine intake on fat oxidation and performance during exercise. Previous investigations have demonstrated that the acute intake of p-synephrine does not modify running sprint performance, jumping capacity, or aerobic capacity. However, the acute intake of p-synephrine, in a dose of 2-3 mg/kg of body mass, has been effective to enhance the rate of fat oxidation during incremental and continuous exercise. This effect has been observed in a range of exercise workloads between 30% and 80% of peak oxygen uptake (VO2peak). The p-synephrine has the ability to increase the maximal rate of fat oxidation during exercise of increasing intensity without affecting the workload at which maximal fat oxidation is obtained (Fatmax). The effect of p-synephrine on fat oxidation is normally accompanied by a concomitant reduction of carbohydrate utilization during exercise, without modifying the energy expended during exercise. The shifting in substrate oxidation is obtained without any effect on heart rate during exercise and the prevalence of adverse effects is negligible. Thus, the acute use of p-synephrine, or p-synephrine-containing products, might offer some benefits for those individuals seeking higher fat utilization during exercise at low to moderate intensities. However, more research is still necessary to determine if the effect of p-synephrine on fat oxidation during exercise is maintained with chronic ingestion, in order to ascertain the utility of this substance in conjunction with exercise programs to produce an effective body fat/weight loss reduction.
Collapse
Affiliation(s)
- Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, 28693 Villanueva de la Cañada, Spain; (C.R.-M.); (V.G.-C.); (J.G.-G.)
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
- Correspondence:
| | - Verónica Giráldez-Costas
- Exercise Physiology Laboratory, Camilo José Cela University, 28693 Villanueva de la Cañada, Spain; (C.R.-M.); (V.G.-C.); (J.G.-G.)
| | - Jaime González-García
- Exercise Physiology Laboratory, Camilo José Cela University, 28693 Villanueva de la Cañada, Spain; (C.R.-M.); (V.G.-C.); (J.G.-G.)
| | | |
Collapse
|
12
|
Gutiérrez-Hellín J, Baltazar-Martins G, Rodríguez I, Lara B, Ruiz-Moreno C, Aguilar-Navarro M, Del Coso J. p-Synephrine, the main protoalkaloid of Citrus aurantium, raises fat oxidation during exercise in elite cyclists. Eur J Sport Sci 2020; 21:1273-1282. [PMID: 32859142 DOI: 10.1080/17461391.2020.1817154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the acute effects of p-synephrine ingestion on substrate oxidation during exercise in elite cyclists. Fifteen elite cyclists volunteered to participate in a double blind, crossover, randomized and placebo-controlled experimental trial. During two different trials, participants either ingested a placebo (cellulose) or 3 mg/kg of p-synephrine. After 60 min for substances absorption, participants performed an incremental maximal cycle ergometer test until volitional fatigue (25 W/min). Breath-by-breath gas exchange data was continuously recorded during the entire test to estimate energy expenditure, carbohydrate oxidation, and fat oxidation rates by stoichiometric equations. Heart rate was continuously measured by using a heart rate monitor. The ingestion of p-synephrine had no significant effects on energy expenditure (F = 0.71, P = 0.40) or heart rate (F = 0.66, P = 0.43) during exercise. However, there was a main effect of p-synephrine to increase the rate of fat oxidation over the placebo (F = 5.1, P = 0.04) and the rate of fat oxidation was higher with p-synephrine in the following loads: 45 ± 2%, 51 ± 3%, 62 ± 3%, 67 ± 4%, 79 ± 5% and 85 ± 5% of the maximum wattage obtained in the test (all P < 0.05). The ingestion of p-synephrine did not modify the maximal rate of fat oxidation during the ramp test (mean value; 95%CI = 0.91; 0.79-1.03 vs 1.01; 0.91-1.11 g/min, respectively, P = 0.06) nor the exercise intensity at which maximal fat oxidation was achieved (i.e. Fatmax = 49; 48-53 vs 50; 47-51% Wmax, P = 0.52). Acute p-synephrine ingestion moved the fat oxidation-exercise intensity curve upwards during an incremental cycling test without affecting Fatmax.
Collapse
Affiliation(s)
| | | | - Iván Rodríguez
- Sports performance Lab, Reebok Sport Club, Madrid, Spain
| | - Beatriz Lara
- Camilo José Cela University, Exercise Physiology Laboratory, Madrid, Spain
| | - Carlos Ruiz-Moreno
- Camilo José Cela University, Exercise Physiology Laboratory, Madrid, Spain
| | | | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University
| |
Collapse
|
13
|
Sá-Nakanishi AB, de Oliveira MC, O Pateis V, P Silva LA, Pereira-Maróstica HV, Gonçalves GA, S Oliveira MA, Godinho J, Bracht L, Milani H, Bracht A, Comar JF. Glycemic homeostasis and hepatic metabolism are modified in rats with global cerebral ischemia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165934. [PMID: 32827650 DOI: 10.1016/j.bbadis.2020.165934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-induced hyperglycemia has been reported to accentuate neurological damage following focal or global cerebral ischemia. Hyperglycemia found in rats following focal brain ischemia occurs in the first 24 h and has been claimed to be caused by increased liver gluconeogenesis and insulin resistance. However, liver gluconeogenesis and the mechanisms leading to hyperglycemia after global cerebral ischemia remain uncertain. This study investigated the glycemic homeostasis and hepatic metabolism in rats after transient four-vessel occlusion (4-VO)-induced global cerebral ischemia, an event that mimics to a certain degree the situation during cardiac arrest. Several metabolic fluxes were measured in perfused livers. Activities and mRNA expressions of hepatic glycolysis and glyconeogenesis rate-limiting enzymes were assessed as well as respiratory activity of hepatic isolated mitochondria. Global cerebral ischemia was associated with hyperglycemia and hyperinsulinemia 24 h after ischemia. Insulin resistance developed later and was prominent after the 5th day. Hepatic anabolism and catabolism were both modified in a complex and time-dependent way. Gluconeogenesis, β-oxidation, ketogenesis and glycolysis were diminished at 24 h after ischemia. At 5 days after ischemia glycolysis had normalized, but gluconeogenesis, ketogenesis and β-oxidation were accelerated. The overall metabolic modifications suggest that a condition of depressed metabolism was established in response to the new conditions generated by the cerebral global ischemia. Whether the modifications in the liver metabolism found in rats after the ischemic insult can be translated to individuals following global brain ischemia remains uncertain, but the results of this study are hoped to encourage further investigations.
Collapse
Affiliation(s)
| | | | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | | | | | | | | | - Jacqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, PR, Brazil.
| |
Collapse
|
14
|
Karn A, Zhao C, Yang F, Cui J, Gao Z, Wang M, Wang F, Xiao H, Zheng J. In-vivo biotransformation of citrus functional components and their effects on health. Crit Rev Food Sci Nutr 2020; 61:756-776. [PMID: 32255367 DOI: 10.1080/10408398.2020.1746234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Citrus, one of the most popular fruits worldwide, contains various functional components, including flavonoids, dietary fibers (DFs), essential oils (EOs), synephrines, limonoids, and carotenoids. The functional components of citrus attract special attention due to their health-promoting effects. Food components undergo complex biotransformation by host itself and the gut microbiota after oral intake, which alters their bioaccessibility, bioavailability, and bioactivity in the host body. To better understand the health effects of citrus fruits, it is important to understand the in-vivo biotransformation of citrus functional components. We reviewed the biotransformation of citrus functional components (flavonoids, DFs, EOs, synephrines, limonoids, and carotenoids) in the body from their intake to excretion. In addition, we described the importance of biotransformation in terms of health effects. This review would facilitate mechanistic understanding of the health-promoting effect of citrus and its functional components, and also provide guidance for the development of health-promoting foods based on citrus and its functional components.
Collapse
Affiliation(s)
- Abhisek Karn
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feilong Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Minqi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Barrea L, Altieri B, Polese B, De Conno B, Muscogiuri G, Colao A, Savastano S. Nutritionist and obesity: brief overview on efficacy, safety, and drug interactions of the main weight-loss dietary supplements. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2019; 9:32-49. [PMID: 31391923 PMCID: PMC6683127 DOI: 10.1038/s41367-019-0007-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past 20 years the use of dietary supplements as adjuvant therapy for weight loss gained growing favor among consumers and dietician-nutritionists, with the subsequent astounding increase in health costs. Despite the reassuring label of natural remedy for losing weight, dietary supplements contain a wide variety of ingredients on which available information is rather scanty and scientifically incomplete. Currently, there is little evidence that weight-loss supplements offer effective aids to reduce weight and meet criteria for recommended use. Robust, randomized, placebo-controlled studies to provide clear-cut scientific evidence of their efficacy and potential side effects in clinical practice are still lacking. Understanding the evidence for the efficacy, safety, and quality of these supplements among nutritionists and physicians is critical to counsel patients appropriately, especially considering the risk of serious adverse effects and interference with concomitant therapies. Detailed information on the efficacy and safety of the most commonly used weight-loss dietary supplements has been recently published by the National Institutes of Health (NIH). However, in this report the thorny issue that may result from drug interactions with weight-loss dietary supplements has been not sufficiently addressed. The aim of this review was to provide a synthetic, evidence-based report on efficacy and safety of the most commonly used ingredients in dietary supplements marketed for weight loss, particularly focusing on their possible drug interactions.
Collapse
Affiliation(s)
- Luigi Barrea
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Altieri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Polese
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara De Conno
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|