1
|
Zhang L, Song J, Xu X, Sun D, Huang H, Chen Y, Zhang T. Silencing long non-coding RNA linc00689 suppresses the growth and invasion of osteosarcoma cells by targeting miR-129-5p/NUSAP1. Int J Exp Pathol 2025; 106:e12524. [PMID: 39891384 PMCID: PMC11785588 DOI: 10.1111/iep.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 02/03/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to play a critical role in the progression and metastasis of osteosarcoma. Recently, long intergenic non-protein coding RNA 689 (linc00689) has been shown to be involved in glioma. However, the precise role of linc00689 in osteosarcoma is unknown. In this study, our data demonstrated that silencing linc00689 by siRNA markedly suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of MG63 and SAOS-2 cells. Bioinformatics analysis and dual-luciferase reporter assay revealed that linc00689 could bind to miR-129-5p. Moreover, NUSAP1 was a target of miR-129-5p and positively regulated by linc00689. Further, NUSAP1 overexpression enhanced MG63 cell behaviour and abolished the inhibitory effects of linc00689 knockdown on the proliferation, migration, invasion and EMT of MG63 cells. In conclusion, linc00689 exerts an oncogenic role in the progression of osteosarcoma, which works via the miR-129-5p/NUSAP1 axis.
Collapse
Affiliation(s)
- Ling Zhang
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Jingtao Song
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Xin Xu
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Donghong Sun
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Huiting Huang
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Yang Chen
- Department of OrthopaedicsHuabei Petroleum General HospitalRenqiuChina
| | - Tao Zhang
- Department of OrthopaedicsTianjin Beichen District Traditional Chinese Medicine HospitalTianjinChina
| |
Collapse
|
2
|
Ge Y, Wang B, Xiao J, Wu H, Shao Q. NUSAP1 promotes gastric cancer radioresistance by inhibiting ubiquitination of ANXA2 and is suppressed by miR-129-5p. J Cancer Res Clin Oncol 2024; 150:406. [PMID: 39212774 PMCID: PMC11364566 DOI: 10.1007/s00432-024-05927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Radiotherapy is an important strategy for the treatment of advanced gastric cancer (GC), while the radioresistance limits its effectiveness. Nucleolar and spindle associated protein 1 (NUSAP1) was implicated in cancer progression and chemoresistance. However, the underlying mechanisms of NUSAP1 influencing GC radioresistance remain largely unknown. METHODS Meta-analysis was conducted to systematically evaluate the prognostic value of NUSAP1 in human cancers. Gene set enrichment analysis (GSEA) was conducted using The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. MRNA and protein expressions were detected by qRT-PCR and western blot, respectively. The radiosensitivity of GC cells was observed by colony formation, flow cytometry, comet, immunofluorescence, and animal assays. Immunoprecipitation assay and mass spectrometry were utilized to identify protein associations. MiRNAs binding with NUSAP1 were determined by starbase prediction, luciferase reporter, and RNA immunoprecipitation (RIP) assays. RESULTS NUSAP1 high expression predicted worse overall survival (OS) and disease-free survival (DFS) with no statistical heterogeneity through the meta-analysis. Downregulation of NUSAP1 significantly increased GC radiosensitivity by inhibiting colony formation, DNA damage repair, and promoting apoptosis following irradiation. Additionally, NUSAP1 silencing combined with radiation resulted in a synergistic anti-tumor effect in xenograft mouse model. Mechanistically, NUSAP1 interacted with ANXA2, protecting it against protein degradation via impeding its ubiquitination process. NUSAP1 was confirmed as a target of miR-129-5p and negatively regulated by it. CONCLUSION Our results suggested that NUSAP1 enhanced the radioresistance of GC cells. NUSAP1 could be a promising target to increase GC radiosensitivity.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Qing Shao
- Department of General Surgery, Jiangyin People's Hospital, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, Jiangsu Province, China.
| |
Collapse
|
3
|
Zhu X, Wu Y, Liao L, Huang W, Yuan L, Huang J, Zhan Y, Liu L. Expression Profile and Gene Regulation Network of NUSAP1 in Pan Cancers Based on Integrated Bioinformatics Analysis. Int J Gen Med 2023; 16:4235-4248. [PMID: 37745137 PMCID: PMC10516127 DOI: 10.2147/ijgm.s414270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Background Nucleolar and spindle-associated protein 1 (NUSAP1) plays key roles in microtubules and chromosomes in normal cells both structurally and functionally. In malignancies, NUSAP1 is frequently dysregulated and mutated. However, the expression profiles and biological functions of NUSAP1 in tumors remain unclear. Methods NUSAP1 expression in BALB/c mice and human normal or tumor tissues was examined using immunohistochemistry. Kaplan-Meier survival analysis was utilized to assess the prognostic significance of NUSAP1 in tumors, and principal component analysis and co-expression analysis were performed to explore the unique roles of NUSAP1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed with DAVID. The relevance between NUSAP1 and tumor-infiltrating immune cells was investigated using TIMER. A transcriptional regulation network was constructed using data from The Cancer Genome Atlas. Results NUSAP1 expression levels in various mice tissues were different. Compared with normal tissues, NUSAP1 was strongly expressed in several human tumor tissues. We believe that NUSAP1 distinctly impacts the prognosis of several cancers and plays various roles in thymoma and testicular germ cell tumors. Further, NUSAP1 expression levels were significantly positively associated with diverse infiltrating levels of immune cells, including B cells, CD4+ and CD8+ T cells, dendritic cells, and macrophages, in thymoma. The expression level of NUSAP1 demonstrated strong relevance with various immune markers in thymoma. Finally, the miR-1236-5p-NUSAP1 and TCF3-NUSAP1 network revealed the tumor-promoting role of NUSAP1 and pertinent underlying mechanisms in human liver hepatocellular carcinoma. Conclusion NUSAP1 may be regarded as a therapeutic target or potential prognostic biomarker for various cancer types.
Collapse
Affiliation(s)
- Xiaodi Zhu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuting Wu
- Blood Transfusion Department, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000People’s Republic of China
| | - Liwei Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Lu Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jihong Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongzhong Zhan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Zhao W, Yang H, Liu L, Qu X, Ding J, Yu H, Xu B, Zhao S, Xi G, Xing L, Chai J. OASL knockdown inhibits the progression of stomach adenocarcinoma by regulating the mTORC1 signaling pathway. FASEB J 2023; 37:e22824. [PMID: 36809539 DOI: 10.1096/fj.202201582r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
The present study investigated the effects of 2'-5' oligoadenylate synthetase-like (OASL) on the biological functions of stomach adenocarcinoma (STAD) cells and tumor formation in nude mice. The differential expression levels of OASL in the different cancer types from TCGA dataset were analyzed using gene expression profiling interactive analysis. Overall survival and the receiver operating characteristic were analyzed using the KM plotter and R, respectively. Furthermore, OASL expression and its effects on the biological functions of STAD cells were detected. The possible upstream transcription factors of OASL were predicted using JASPAR. The downstream signaling pathways of OASL were analyzed using GSEA. Tumor formation experiments were performed to evaluate the effect of OASL on tumor formation in nude mice. The results showed that OASL was highly expressed in STAD tissues and cell lines. OASL knockdown markedly inhibited cell viability, proliferation, migration, and invasion and accelerated STAD cell apoptosis. Conversely, OASL overexpression had the opposite effect on STAD cells. JASPAR analysis revealed that STAT1 is an upstream transcription factor of OASL. Furthermore, GSEA showed that OASL activated the mTORC1 signaling pathway in STAD. The protein expression levels of p-mTOR and p-RPS6KB1 were suppressed by OASL knockdown and promoted by OASL overexpression. The mTOR inhibitor, rapamycin, markedly reversed the effect of OASL overexpression on STAD cells. Additionally, OASL promoted tumor formation and increased tumor weight and volume in vivo. In conclusion, OASL knockdown suppressed the proliferation, migration, invasion, and tumor formation of STAD cells by inhibiting the mTOR signaling pathway.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiology, Shandong University Cancer Center, Jinan, China.,Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, China
| | - Haiying Yang
- Department of Cardiology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, China
| | - Luguang Liu
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianlin Qu
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jishuang Ding
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hang Yu
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Botao Xu
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Siwei Zhao
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangmin Xi
- College of Life Science, Qi Lu Normal University, Jinan, China
| | - Ligang Xing
- Department of Radiology, Shandong University Cancer Center, Jinan, China.,Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Chai
- Department of Gastroenterological surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Silencing RPL8 inhibits the progression of hepatocellular carcinoma by down-regulating the mTORC1 signalling pathway. Hum Cell 2023; 36:725-737. [PMID: 36577883 DOI: 10.1007/s13577-022-00852-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to explore the role of ribosomal protein L8 (RPL8) in controlling hepatocellular carcinoma (LIHC) development. We measured RPL8 expression, apoptosis, cell viability, proliferation, migration, invasion, glucose uptake, lactate production, and the ATP/ADP ratio of LIHC cells to investigate the effect of RPL8 on LIHC. Bioinformatic analysis was employed to analyse RPL8 expression and its potential mechanism in LIHC. RPL8 was upregulated in LIHC tissues and cells. RPL8 silencing accelerated apoptosis and suppressed viability, growth, and movement of LIHC cells. Additionally, RPL8 silencing inhibited glycolysis in LIHC cells. Bioinformatic analysis revealed that RPL8 is regulated by the upstream transcription factor upstream stimulating factor 1 (USF1) and activates the mTORC1 signalling pathway. USF1 overexpression eliminated the inhibitory effect of RPL8 silencing in LIHC cells. RPL8 overexpression increased cell growth, movement, and glycolysis in LIHC. However, inhibition of the mTORC1 signalling pathway eliminated the effect of RPL8 overexpression on LIHC cells. In conclusion, RPL8 may affect LIHC progression by regulating the mTORC1 signalling pathway.
Collapse
|
7
|
Wang Y, Li T, Yang L, Zhang X, Wang X, Su X, Ji C, Wang Z. Cancer-associated fibroblast-released extracellular vesicles carrying miR-199a-5p induces the progression of gastric cancer through regulation of FKBP5-mediated AKT1/mTORC1 signaling pathway. Cell Cycle 2022; 21:2590-2601. [PMID: 36005478 PMCID: PMC9704384 DOI: 10.1080/15384101.2022.2105092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/24/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence has unfolded the significance of extracellular vesicles (EVs) in diseases and cancers. Here, we attempted to discuss the role of cancer-associated fibroblasts (CAFs)-derived EVs containing miR-199a-5p in gastric tumorigenesis. Upregulated miR-199a-5p was first identified in cancer cells. Then, we selected CAFs for isolation of EVs which were co-cultured with AGS cells. We observed successful delivery of miR-199a-5p via CAF-derived EVs. Besides, miR-199a-5p promoted malignant properties of AGS cells. Moreover, miR-199a-5p downregulated FKBP5, leading to upregulated phosphorylation level of AKT1, which promoted the malignant phenotypes of AGS cells by activating mammalian target of rapamycin complex 1(mTORC1). Exosomal miR-199a-5p from CAFs promoted gastric tumorigenesis in vivo. Our findings point toward the critical role of CAFs-derived EVs carrying miR-199a-5p in gastric cancer progression.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Tao Li
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Lei Yang
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Xunlei Zhang
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Xiaoli Wang
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Xiaoqin Su
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Congfei Ji
- Department of Medical Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, P.R. China
| | - Zhenxin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
8
|
Li J, Tang M, Wu J, Qu H, Tu M, Pan Z, Gao C, Yang Y, Qu C, Huang W, Hong J. NUSAP1, a novel stemness-related protein, promotes early recurrence of hepatocellular carcinoma. Cancer Sci 2022; 113:4165-4180. [PMID: 36106345 DOI: 10.1111/cas.15585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
Early recurrence (within 2 years after resection) is the primary cause of poor outcomes among hepatocellular carcinoma (HCC) patients, and liver cancer stem cells are the main contributors to postsurgical HCC recurrence. Nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in tumor progression. We investigated the function and clinical value of NUSAP1 in early recurrence of HCC. Data from public datasets and our cohort were used to assess the association between NUSAP1 expression and early HCC recurrence. Gain- and loss-of-function experiments were carried out in vivo and in vitro. The predictive effect of NUSAP1 on early HCC recurrence was further evaluated by a validation cohort. We found that elevated NUSAP1 expression in HCC specimens was correlated with poor outcome, especially in cases with postoperative early recurrence. Functional studies indicated that NUSAP1 significantly promotes HCC progression. A postsurgical recurrence murine model further revealed that upregulated NUSAP1 dramatically increased the likelihood of HCC early recurrence. RNA sequencing data revealed that the gene sets of cancer stemness and the signal transducer and activator of transcription 3 (STAT3) pathway were enriched by NUSAP1 overexpression. Mechanistically, NUSAP1 enhanced cancer stemness through stimulating STAT3 nuclear translocation and activation through receptor of activated protein C kinase 1 (RACK1). In a validation cohort with 112 HCC patients, NUSAP1 effectively predicted HCC early recurrence. Our results indicated that NUSAP1 promotes early recurrence of HCC by sustaining cancer stemness and could serve as a valuable predictive indicator for postsurgical intervention in HCC patients.
Collapse
Affiliation(s)
- Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ming Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Mengxian Tu
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Pan
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuping Yang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Li Y, Shi H, Zhao Z, Xu M. Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). BMC Urol 2022; 22:162. [PMID: 36258196 PMCID: PMC9580185 DOI: 10.1186/s12894-022-01113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most diagnosed cancers in the world. PCa inevitably progresses to castration-resistant prostate cancer (CRPC) after androgen deprivation therapy treatment, and castration-resistant state means a shorter survival time than other causes. Here we aimed to define castration-dependent and -independent diver genes and molecular pathways in CRPC which are responsible for such lethal metastatic events. Methods By employing digital gene expression (DGE) profiling, the alterations of the epididymal gene expression profile in the mature and bilateral castrated rat were explored. Then we detect and characterize the castration-dependent and -independent genes and pathways with two data set of CPRC-associated gene expression profiles publicly available on the NCBI. Results We identified 1,632 up-regulated and 816 down-regulated genes in rat’s epididymis after bilateral castration. Differential expression analysis of CRPC samples compared with the primary PCa samples was also done. In contrast to castration, we identified 97 up-regulated genes and 128 down-regulated genes that changed in both GEO dataset and DGE profile, and 120 up-regulated genes and 136 down-regulated genes changed only in CRPC, considered as CRPC-specific genes independent of castration. CRPC-specific DEGs were mainly enriched in cell proliferation, while CRPC-castration genes were associated with prostate gland development. NUSAP1 and NCAPG were identified as key genes, which might be promising biomarkers of the diagnosis and prognosis of CRPC. Conclusion Our study will provide insights into gene regulation of CRPC dependent or independent of castration and will improve understandings of CRPC development and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01113-5.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China.
| | - Hui Shi
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Zhenjun Zhao
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Minghui Xu
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Xie J, Wang B, Luo W, Li C, Jia X. Upregulation of KIF18B facilitates malignant phenotype of esophageal squamous cell carcinoma by activating CDCA8/mTORC1 pathway. J Clin Lab Anal 2022; 36:e24633. [PMID: 36085568 PMCID: PMC9550975 DOI: 10.1002/jcla.24633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 18B (KIF18B) has been regarded as an oncogene that is abnormally overexpressed in some cancers, but its mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear, which is thereby investigated in this study. Methods Bioinformatics analysis was performed to analyze the expression of KIF18B in esophageal carcinoma (ESCA). Quantitative real‐time polymerase chain reaction (qRT‐PCR) was used to detect KIF18B expression in ESCC cells. After KIF18B overexpression or cell division cycle associated 8 (CDCA8) deficiency, ESCC cells were subjected to determination of qRT‐PCR, Western blot, cell counting kit‐8 assay, flow cytometry, wound healing, and Transwell assay. The mechanism of KIF18B in the mechanistic target of rapamycin complex 1 (mTORC1) pathway was detected by Western blot. Results KIF18B was overexpressed in ESCA samples and ESCC cells. Upregulation of KIF18B enhanced the viability, accelerated cell cycle by elevating CDK4 and Cyclin D3 levels as well as promoted the migration and invasion by decreasing E‐cadherin level and increasing Vimentin and N‐cadherin levels in ESCC cells, which was counteracted by CDCA8 silencing. The expression of CDCA8 in ESCC cells was upregulated by KIF18B overexpression. KIF18B overexpression activated the mTORC1 pathway by upregulating phosphorylated (p)‐/p70S6K and p‐/mTOR levels in the ESCC cells, which was reversed by CDCA8 silencing. Conclusion KIF18B overexpression promotes the proliferation, migration, and invasion of ESCC cells via CDCA8‐mediated mTORC1 signaling pathway in vitro.
Collapse
Affiliation(s)
- Jiangliu Xie
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Bo Wang
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Wenjie Luo
- Gastroenterology Department, Yaan People's Hospital, Ya'an, China
| | - Chen Li
- Cardiology Department, Yaan People's Hospital, Ya'an, China
| | - Xunchao Jia
- Oncology Department, Yaan People's Hospital, Ya'an, China
| |
Collapse
|
11
|
Kong F, Yan Z, Lan N, Wang P, Fan S, Yuan W. Construction and validation of gastric cancer diagnosis model based on machine learning. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To screen differentially expressed genes related to gastric cancer based on The Cancer Genome Atlas (TCGA) database and construct a gastric cancer diagnosis model by machine learning.
Methods: Transcriptional data, genomic data, and clinical information of gastric cancer tissues and non-gastric cancer tissues were downloaded from the TCGA database, and differentially expressed genes of gastric cancer messenger RNA (mRNA) and long non-coding RNA (lncRNA) were screened out. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the differentially expressed genes, and the protein-protein interaction (PPI) of differentially expressed genes was constructed. Core differentially expressed genes were screened by Cytoscape software’s molecular complex detection (MCODE) plug-in. The differential genes of lncRNA were analyzed by univariate Cox regression analysis and lasso regression for further dimension reduction to obtain the core genes. The core genes were screened by machine learning to construct the gastric cancer diagnosis model. The efficiency of the gastric cancer diagnosis model was verified externally by the Gene Expression Omnibus (GEO) database.
Results: Finally, 10 genes including long intergenic non-protein coding RNA 1821 (LINC01821), AL138826.1, AC022164.1, adhesion G protein-coupled receptor D1-antisense RNA 1 (ADGRD1-AS1), cyclin B1 (CCNB1), kinesin family member 11 (KIF11), Aurora kinase B (AURKB), cyclin dependent kinase 1 (CDK1), nucleolar and spindle associated protein 1 (NUSAP1), and TTK protein kinase (TTK) were screened as gastric cancer diagnostic model genes. After efficiency analysis, it was found that the random forest algorithm model had the best comprehensive evaluation, with an accuracy of 92% and an area under the curve (AUC) of 0.9722, which was more suitable for building a gastric cancer diagnosis model. The GSE54129 data set was used to verify the gastric cancer diagnosis model with an AUC of 0.904, indicating that the gastric cancer diagnosis model had high accuracy.
Conclusions: Machine learning can simplify the bioinformatics analysis process and improve efficiency. The core gene discovered in this study is expected to become a gene chip for the diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Fei Kong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Ziqin Yan
- The Silk Road Infoport Co., Ltd., Lanzhou 730030, Gansu, China
| | - Ning Lan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Pinxiu Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Shanlin Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Wenzhen Yuan
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| |
Collapse
|
12
|
Gao T, Zhao L, Zhang F, Cao C, Fan S, Shi X. Evaluate the diagnostic and prognostic value of NUSAP1 in papillary thyroid carcinoma and identify the relationship with genes, proteins, and immune factors. World J Surg Oncol 2022; 20:207. [PMID: 35710427 PMCID: PMC9202173 DOI: 10.1186/s12957-022-02652-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Nucleolar spindle-associated protein 1 (NUSAP1) is reported to be a useful diagnostic and prognostic marker for a variety of cancers, but relevant studies are lacking in papillary thyroid carcinoma (PTC). Methods The relationship between NUSAP1 expression and the overall survival (OS) of pan-cancer was examined by GEPIA and KMplot. We explored the relationship between NUSAP1 and clinical PTC data based on the THCA dataset of TCGA and the GEO dataset of NCBI; GO, KEGG analysis, and ceRNA networks were performed on co-expressed genes through LinkedOmics and Starbase. We assessed the relevance between NUSAP1 and the tumor microenvironment using ESTIMATE, correlations between NUSAP1 and immune cells with TIMER, the relationship between NUSAP1 and immunotherapy by TCIA, and small-molecule drugs targeting NUSAP1 that can be discovered using the CMap database. Results Higher expression of NUSAP1 in pan-cancer tissues was correlated with shorter OS. NUSAP1 was also significantly expressed in PTC tissues and was an independent prognostic risk factor. Compared to the NUSAP1 low expression group, the NUSAP1 high expression group was more likely to also have lymph node metastasis, pathological PTC type, shorter progression-free survival (PFS), and higher scores for immune checkpoint inhibitor treatment. The genes associated with NUSAP1 were mostly involved in the cell cycle, immune-related pathways, and AITD. Ten lncRNAs (GAS5, SNHG7, UCA1, SNHG1, HCP5, DLEU2, HOTAIR, TP53TG1, SNHG12, C9orf106), eleven miRNAs (hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-18a-5p, hsa-miR-18b-5p, hsa-miR-128-3p, hsa-miR-214-3p, hsa-miR-219a-2-3p, hsa-miR-339-5p, hsa-miR-494-3p, hsa-miR-545-3p, hsa-miR-769-5p), and one mRNA (NUSAP1) were constructed. NUSAP1 participated in the formation of the tumor microenvironment. CMap predicted the 10 most important small molecules about NUSAP1. Conclusions In PTC, NUSAP1 shows good diagnostic value and prognostic value; NUSAP1 impacts the cell cycle, immune-related pathways, and AITD and has a complex effect on the tumor microenvironment in PTC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02652-9.
Collapse
Affiliation(s)
- Tiantian Gao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Fan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Conghui Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Shuting Fan
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China.
| |
Collapse
|
13
|
Hu Y, Xue Z, Qiu C, Feng Z, Qi Q, Wang J, Jin W, Zhong Z, Liu X, Li W, Zhang Q, Huang B, Chen A, Wang J, Yang N, Zhou W. Knockdown of NUSAP1 inhibits cell proliferation and invasion through downregulation of TOP2A in human glioblastoma. Cell Cycle 2022; 21:1842-1855. [PMID: 35532155 PMCID: PMC9359390 DOI: 10.1080/15384101.2022.2074199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nucleolar and spindle associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development, progression, and metastasis of several types of cancer. Here, we investigated the expression and biological function of NUSAP1 in human glioblastoma (GBM), an aggressive brain tumor type with largely ineffective treatment options. Analysis of the molecular data in CGGA, TCGA and Rembrandt datasets demonstrated that NUSAP1 was significantly upregulated in GBM relative to low grade gliomas and non-neoplastic brain tissue samples. Kaplan-Meier analysis indicated that patients with tumors showing high NUSAP1 expression exhibited significantly poorer survival in both CGGA (P = 0.002) and Rembrandt cohorts (P = 0.017). Analysis of RNA sequencing data from P3-cells with stable knockdown of NUSAP1 revealed topoisomerase 2A (TOP2A) as a possible molecule downregulated by the loss of NUSAP1. Molecular analysis of the CGGA data revealed a strong correlation between NUSAP1 and TOP2A expression in primary gliomas and recurrent gliomas samples. SiRNA knockdown of either NUSAP1 or TOP2A in U251, T98 and GBM derived patient P3 cells inhibited GBM cell proliferation and invasion, and induced cell apoptosis. Finally, stable knockdown of NUSAP1 with shRNA led to decreased tumor growth in an orthotopic xenograft model of GBM in mice. Taken together, NUSAP1 gene silencing induced apoptosis possibly through the downregulation of the candidate downstream molecule TOP2A. Interference with the expression of NUSAP1 might therefore inhibit malignant progression in GBM, and NUSAP1 might thus serve as a promising molecular target for GBM treatment.
Collapse
Affiliation(s)
- Yaotian Hu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenxing Jin
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zhaoyang Zhong
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Biomedicine, University of Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Jiang Y, Chen F, Ren X, Yang Y, Luo J, Yuan J, Yuan J, Tong Q. RNA-Binding Protein COL14A1, TNS1, NUSAP1 and YWHAE Are Valid Biomarkers to Predict Peritoneal Metastasis in Gastric Cancer. Front Oncol 2022; 12:830688. [PMID: 35515139 PMCID: PMC9062106 DOI: 10.3389/fonc.2022.830688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of tumor related mortality worldwide. Peritoneal metastasis (PM) occurs in more than half of advanced GC patients, leading to poor prognosis. Therefore, the GSE62254 cohort was used to construct a signature consisting of four RNA-binding proteins (RBP) to predict the possibility of PM in GC patients. Then, ROC curves were plotted followed by calculation of AUCs, showing that the signature had a similar predictive accuracy compared with the TNM staging system. Importantly, the capability of prediction was enhanced by combining the classifier and TNM staging. In order to validate the expression of the four RBPs in GC tissues with and without PM, immunohistochemistry was further performed on samples from 108 patients. The differential expression of COL14A1, TNS1, NUSAP1 and YWHAE was in accordance with the emergence of PM. Afterwards, we produced Kaplan–Meier curves according to the signature and differential expression of the RBPs in patients. Finally, CCK-8 assays were performed to verify the effect on cell proliferation, finding that COL14A1 and TNS1 promoted cell proliferation, while NUSAP1 and YWHAE led to suppressed cell proliferation. In conclusion, the four-RBP-based signature, combined with TNM staging, has the potential to predict risk of PM in GC.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajun Luo
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Han Y, Hu X, Yun X, Liu J, Yang J, Tian Z, Zhang X, Zhang Y, Wang X. Nucleolar and spindle associated protein 1 enhances chemoresistance through DNA damage repair pathway in chronic lymphocytic leukemia by binding with RAD51. Cell Death Dis 2021; 12:1083. [PMID: 34782617 PMCID: PMC8593035 DOI: 10.1038/s41419-021-04368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is an essential regulator of mitotic progression, spindle assembly, and chromosome attachment. Although NUSAP1 acts as an oncogene involved in the progression of several cancers, the exact role of chronic lymphocytic leukemia (CLL) remains elusive. Herein, we first discovered obvious overexpression of NUSAP1 in CLL associated with poor prognosis. Next, the NUSAP1 level was modulated by transfecting CLL cells with lentivirus. Silencing NUSAP1 inhibited the cell proliferation, promoted cell apoptosis and G0/G1 phase arrest. Mechanistically, high expression of NUSAP1 strengthened DNA damage repairing with RAD51 engagement. Our results also indicated that NUSAP1 knockdown suppressed the growth CLL cells in vivo. We further confirmed that NUSAP1 reduction enhanced the sensitivity of CLL cells to fludarabine or ibrutinib. Overall, our research investigates the mechanism by which NUSAP1 enhances chemoresistance via DNA damage repair (DDR) signaling by stabilizing RAD51 in CLL cells. Hence, NUSAP1 may be expected to be a perspective target for the treatment of CLL with chemotherapy resistance.
Collapse
Affiliation(s)
- Yang Han
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xinting Hu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xiaoya Yun
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Jiarui Liu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Juan Yang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Zheng Tian
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Xin Zhang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021 China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China ,grid.27255.370000 0004 1761 1174School of Medicine, Shandong University, Jinan, Shandong 250012 China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021 China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. .,School of Medicine, Shandong University, Jinan, Shandong, 250012, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, 250021, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
16
|
Wu Y, Liu H, Gong Y, Zhang B, Chen W. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression. Bosn J Basic Med Sci 2021; 21:294-304. [PMID: 32651974 PMCID: PMC8112564 DOI: 10.17305/bjbms.2020.4701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Although great advancements have been achieved in the diagnosis and treatment of breast cancer, the prognosis of patients with breast cancer is still poor due to distal recurrence and metastasis after surgery. This study aimed to assess the role of ankyrin repeat domain 22 (ANKRD22) in the progression of breast cancer and investigate the molecular mechanism. Using immunohistochemistry, we demonstrated that the expression level of ANKRD22 in human breast cancer tissues was significantly higher than that in normal breast tissues. ANKRD22 knockdown inhibited the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells, as confirmed by BrdU, colony formation, transwell, and immunoblot assays. Immunoblot assays further indicated that ANKRD22 regulated the expression of nucleolar and spindle-associated protein 1 (NuSAP1) and then caused the activation of Wnt/β-catenin signaling pathway. Moreover, overexpression of NUSAP1 reversed the inhibitory effects of ANKRD22 knockdown on the proliferation, invasion, and EMT of breast cancer cells. In summary, this study demonstrated that ANKRD22 enhanced breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression, which might shed light on new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Yange Wu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Hongxia Liu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Yufeng Gong
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Bo Zhang
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Wenxiu Chen
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
17
|
Zhang X, Liu Y, Zhang Z, Tan J, Zhang J, Ou H, Li J, Song Z. Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature. Front Cell Dev Biol 2021; 9:649265. [PMID: 33748143 PMCID: PMC7969999 DOI: 10.3389/fcell.2021.649265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Aberrant regulation of angiogenesis involves in the growth and metastasis of tumors, but angiogenesis inhibitors fail to improve overall survival of pancreatic cancer patients in previous phase III clinical trials. A comprehensive knowledge of the mechanism of angiogenesis inhibitors against pancreatic cancer is helpful for clinical purpose and for the selection of patients who might benefit from the inhibitors. In this work, multi-omics analyses (transcriptomics, proteomics, and phosphoproteomics profiling) were carried out to delineate the mechanism of anlotinib, a novel angiogenesis inhibitor, against pancreatic cancer cells. The results showed that anlotinib exerted noteworthy cytotoxicity on pancreatic cancer cells. Multi-omics analyses revealed that anlotinib had a profound inhibitory effect on ribosome, and regulated cell cycle, RNA metabolism and lysosome. Based on the multi-omics results and available data deposited in public databases, an anlotinib-related gene signature was further constructed to identify a subgroup of pancreatic cancer patients who had a dismal prognosis and might be responsive to anlotinib.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Ou
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Department of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Guo H, Zou J, Zhou L, Zhong M, He Y, Huang S, Chen J, Li J, Xiong J, Fang Z, Xiang X. NUSAP1 Promotes Gastric Cancer Tumorigenesis and Progression by Stabilizing the YAP1 Protein. Front Oncol 2021; 10:591698. [PMID: 33489890 PMCID: PMC7817543 DOI: 10.3389/fonc.2020.591698] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 01/19/2023] Open
Abstract
The Yes-associated protein (YAP1) is a main effector of the canonical Hippo pathway, which contributes greatly to tumor initiation, progression, and metastasis in multiple cancers, including gastric cancer (GC). Due to limited knowledge of YAP1 upregulation in cancer, it is a great challenge of therapeutic targets toward the Hippo-YAP1 pathway. Here, we identify nucleolar spindle-associated protein 1 (NUSAP1) as a novel binding partner of YAP1. The upregulation of NUSAP1 is associated with unfavorable clinical outcomes in GC patients, and NUSAP1 depletion impairs its oncogenic properties in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 functions as a positive regulator of YAP1 protein stability, thereby inducing the transcription of Hippo pathway downstream target genes, such as CTGF and CYR61. More interestingly, we find that the cancer-promoting effects of NUSAP1 on GC cell growth, migration, and invasion are mainly mediated by YAP1. Furthermore, aberrant expression of NUSAP1 and YAP1 is highly correlated in GC cell lines and tissues. We herein clarify the role of the oncogenic NUSAP1-YAP1 axis in GC tumorigenesis and progression and, therefore, provide novel therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Zou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Zhang L, Dang Y, Wang Y, Fan X. Nucleolar and spindle-associated protein 1 accelerates cellular proliferation and invasion in nasopharyngeal carcinoma by potentiating Wnt/β-catenin signaling via modulation of GSK-3β. J Bioenerg Biomembr 2020; 52:441-451. [PMID: 33196964 DOI: 10.1007/s10863-020-09860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Nucleolar and spindle-associated protein 1 (NUSAP1) is a pivotal tumor-related protein that has been implicated in the progression of broad spectrum of tumors. However, no detailed study of the role of NUSAP1 in nasopharyngeal carcinoma (NPC) has been reported. The aim of this work is to enhance our understanding of NUSAP1 in the progression of NPC. By analyzing data available within the Oncomine database, we found that NUSAP1 expression was elevated in NPC relative to normal tissues. Further, we showed that NUSAP1 expression in clinical specimens of NPC and several NPC cell lines was elevated. Down-regulation of NUSAP1 by gene silencing markedly depleted the capacity of NPC cells to proliferate and invade. Contrastingly, overexpression of NUSAP1 potentiated the proliferative and invasive abilities of NPC cells. Further mechanistic research revealed that NUSAP1 knockdown decreased levels of Wnt/β-catenin signaling in NPC cells via a mechanism associated with downregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. However, suppression of GSK-3β markedly abolished the inhibitory effect of NUSAP1 knockdown on Wnt/β-catenin signaling. Further, inhibition of Wnt/β-catenin signaling partially reversed NUSAP1-mediated tumor growth in NPC cells. In addition, NUSAP1 knockdown restrained tumorigenesis of NPC in vivo, and was associated with down-regulation of Wnt/β-catenin signaling. In conclusion, these findings demonstrate that NUSAP1 is capable of accelerating proliferation and invasion in NPC cells by potentiating Wnt/β-catenin signaling. Our study unveils a potential role of NUSAP1 in promoting NPC tumors and suggests that the protein is an attractive antitumor target for NPC treatment.
Collapse
Affiliation(s)
- Ligang Zhang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Yabin Dang
- Department of Otolaryngology, Xianyang Hospital of Yan'an University, Xianyang City, 712000, Shaanxi Province, China
| | - Ying Wang
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China
| | - Xin Fan
- Department of Otolaryngology, Xianyang First People's Hospital, 10 Biyuan Road, Xianyang City, 712000, Shaanxi Province, China.
| |
Collapse
|