1
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
2
|
Ranjbar M, Whetstone CE, Cusack RP, Al-Sajee D, Omer H, Alsaji N, Ho T, Duong M, Mitchell P, Satia I, Keith PK, Xie Y, MacLean J, Sommer DD, O'Byrne PM, Sehmi R, Gauvreau GM. Comparison of upper and lower airway expression of SARS-CoV-2 receptors in allergic asthma. Allergy 2024; 79:2856-2858. [PMID: 38726474 DOI: 10.1111/all.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 05/04/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Maral Ranjbar
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Christiane E Whetstone
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Ruth P Cusack
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Dhuha Al-Sajee
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Hafsa Omer
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Nadia Alsaji
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Terence Ho
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - MyLinh Duong
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Mitchell
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Imran Satia
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Paul K Keith
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Yanqing Xie
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan MacLean
- Department of Surgery, Otolaryngology, Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Doron D Sommer
- Department of Surgery, Otolaryngology, Head & Neck Surgery Division, McMaster University, Hamilton, Ontario, Canada
| | - Paul M O'Byrne
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Gail M Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Takeda Y, Demura M, Yoneda T, Takeda Y. Epigenetic Regulation of the Renin-Angiotensin-Aldosterone System in Hypertension. Int J Mol Sci 2024; 25:8099. [PMID: 39125667 PMCID: PMC11312206 DOI: 10.3390/ijms25158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, and kidneys in salt-sensitive hypertension. However, the mechanism of gene regulation in each component of the RAAS in cardiovascular and renal tissues is unclear. Epigenetic mechanisms, which are important for regulating gene expression, include DNA methylation, histone post-translational modifications, and microRNA (miRNA) regulation. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in visceral adipose tissue and the heart of salt-sensitive hypertensive rats. Several miRNAs influence AGT expression and are associated with cardiovascular diseases. Expression of both ACE and ACE2 genes is regulated by DNA methylation, histone modifications, and miRNAs. Expression of both angiotensinogen and CYP11B2 is reversibly regulated by epigenetic modifications and is related to salt-sensitive hypertension. The mineralocorticoid receptor (MR) exists in cardiovascular and renal tissues, in which many miRNAs influence expression and contribute to the pathogenesis of hypertension. Expression of the 11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene is also regulated by methylation and miRNAs. Epigenetic regulation of renal and vascular HSD11B2 is an important pathogenetic mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Endocrinology and Metabolism, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan;
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan;
| | - Takashi Yoneda
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-8641, Japan;
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
| | - Yoshiyu Takeda
- Department of Health Promotion of Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa 921-8641, Japan
- Hypertension Center, Asanogawa General Hospital, Kanazawa 910-8621, Japan
| |
Collapse
|
4
|
Dey A, Vaishak K, Deka D, Radhakrishnan AK, Paul S, Shanmugam P, Daniel AP, Pathak S, Duttaroy AK, Banerjee A. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection 2023; 51:1603-1618. [PMID: 36906872 PMCID: PMC10008189 DOI: 10.1007/s15010-023-02017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
PURPOSE The COVID-19 pandemic caused by the novel Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has put the world in a medical crisis for the past three years; nearly 6.3 million lives have been diminished due to the virus outbreak. This review aims to update the recent findings on COVID-19 infections from an epigenetic scenario and develop future perspectives of epi-drugs to treat the disease. METHODS Original research articles and review studies related to COVID-19 were searched and analyzed from the Google Scholar/PubMed/Medline databases mainly between 2019 and 2022 to brief the recent work. RESULTS Numerous in-depth studies of the mechanisms used by SARS-CoV-2 have been going on to minimize the consequences of the viral outburst. Angiotensin-Converting Enzyme 2 receptors and Transmembrane serine protease 2 facilitate viral entry to the host cells. Upon internalization, it uses the host machinery to replicate viral copies and alter the downstream regulation of the normal cells, causing infection-related morbidities and mortalities. In addition, several epigenetic regulations such as DNA methylation, acetylation, histone modifications, microRNA, and other factors (age, sex, etc.) are responsible for the regulations of viral entry, its immune evasion, and cytokine responses also play a major modulatory role in COVID-19 severity, which has been discussed in detail in this review. CONCLUSION Findings of epigenetic regulation of viral pathogenicity open a new window for epi-drugs as a possible therapeutical approach against COVID-19.
Collapse
Affiliation(s)
- Amit Dey
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - K Vaishak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc., CP 76130, San Pablo, Querétaro, Mexico
| | - Priyadarshini Shanmugam
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Alice Peace Daniel
- Department of Microbiology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN, 603103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India.
| |
Collapse
|
5
|
de Sousa RBN, do Nascimento LRS, Costa LHA, Leite VRMC, Borges CL, de Deus JM, Rebelo ACS, Pinheiro DDS, Pedrino GR. Combinatorial analysis of ACE and ACE2 polymorphisms reveals protection against COVID-19 worsening: A genetic association study in Brazilian patients. PLoS One 2023; 18:e0288178. [PMID: 38032879 PMCID: PMC10688632 DOI: 10.1371/journal.pone.0288178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 12/02/2023] Open
Abstract
Since angiotensin-converting enzyme 2, ACE2, was identified as the receptor for SARS-CoV-2 and considering the intense physiological interplay between the two angitensinases isoforms, ACE and ACE2, as counter-regulatory axis of the renin-angiotensin system, we proposed the evaluation of polymorphisms in these two key regulators in relation to COVID-19 severity. A genetic association study involving 621 COVID-19 hospitalized patients from Brazil was performed. All subjects had a confirmed diagnosis of COVID-19 via RT-PCR. Patients were categorized into two groups: the "mild" group (N = 296), composed of individuals hospitalized in ward beds who progressed to cure, and the "severe" group (N = 325), composed of individuals who required hospitalization in an intensive care unit (ICU), or who died. Blood samples were genotyped for ACE I/D polymorphism and ACE2 G8790A polymorphism by real-time PCR via TaqMan assay. The analysis of combined polymorphisms revealed a protective role for genotypic profile II/A_ (ORA = 0,26; p = 0,037) against the worsening of COVID-19 in women. The results indicate a protection profile to COVID-19 progression, in which the II/A_ carriers have almost four times less chance of a severe outcome. It is proposed that a decreased activity of ACE (deleterious effects) in conjunction with an increased ACE2 activity (protective effects), should be the underlying mechanism. The findings are unprecedented once other studies have not explored the genotypic combination analysis for ACE and ACE2 polymorphisms and bring perspectives and expectations for dealing with the COVID-19 pandemic based on definitions of genetically-based risk groups within the context of personalized medicine.
Collapse
Affiliation(s)
| | - Lis Raquel Silva do Nascimento
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Luiz Henrique Alves Costa
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - José Miguel de Deus
- Department of Gynecology and Obstetrics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Cristina Silva Rebelo
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Denise da Silva Pinheiro
- Laboratory of Clinical Analysis and Health Education, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
6
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
8
|
Exploring the Role of ACE2 as a Connecting Link between COVID-19 and Parkinson's Disease. Life (Basel) 2023; 13:life13020536. [PMID: 36836893 PMCID: PMC9961012 DOI: 10.3390/life13020536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson's disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson's disease patients frequently worsen following SARS-CoV-2 infection. Although it is still unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut-brain axis dysregulation, blood-brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
Collapse
|
9
|
Sen R, Sarkar S, Chlamydas S, Garbati M, Barnes C. Epigenetic features, methods, and implementations associated with COVID-19. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:161-175. [DOI: 10.1016/b978-0-323-91794-0.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Baxter BA, Ryan MG, LaVergne SM, Stromberg S, Berry K, Tipton M, Natter N, Nudell N, McFann K, Dunn J, Webb TL, Armstrong M, Reisdorph N, Ryan EP. Correlation between 25-hydroxyvitamin D/D3 Deficiency and COVID-19 Disease Severity in Adults from Northern Colorado. Nutrients 2022; 14:nu14245204. [PMID: 36558362 PMCID: PMC9782165 DOI: 10.3390/nu14245204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency is common in the United States and leads to altered immune function, including T cell and macrophage activity that may impact responses to SARS-CoV-2 infection. This study investigated 131 adults with a history of a positive SARS-CoV-2 nasopharyngeal PCR and 18 adults with no COVID-19 diagnosis that were recruited from the community or hospital into the Northern Colorado Coronavirus Biorepository (NoCo-COBIO). Participants consented to enrollment for a period of 6 months and provided biospecimens at multiple visits for longitudinal analysis. Plasma 25-hydroxyvitamin D levels were quantified by LC-MS/MS at the initial visit (n = 149) and after 4 months (n = 89). Adults were classified as deficient (<30 nM or <12 ng/mL), insufficient (<30−50 nM or 12−20 ng/mL), or optimal (50−75 nM or >20 ng/mL) for 25-hydroxyvitamin D status. Fisher’s exact test demonstrated an association between disease severity, gender, and body mass index (BMI) at baseline. Mixed model analyses with Tukey-Kramer were used for longitudinal analysis according to BMI. Sixty-nine percent (n = 103) of the entire cohort had optimal levels of total 25(OH)D, 22% (n = 32) had insufficient levels, and 9% (n = 14) had deficent levels. Participants with severe disease (n = 37) had significantly lower 25-hydroxyvitamin D (total 25(OH)D) when compared to adults with mild disease (p = 0.006) or no COVID-19 diagnosis (p = 0.007). There was 44% of the cohort with post-acute sequalae of COVID-19 (PASC) as defined by experiencing at least one of the following symptoms after 60 days’ post-infection: fatigue, dyspnea, joint pain, chest pain, forgetfulness or absent-mindedness, confusion, or difficulty breathing. While significant differences were detected in 25-hydroxyvitamin D status by sex and BMI, there were no correlations between 25-hydroxyvitamin D for those without and without PASC. This longitudinal study of COVID-19 survivors demonstrates an important association between sex, BMI, and disease severity for 25-hydroxyvitamin D deficiency during acute stages of infection, yet it is not clear whether supplementation efforts would influence long term outcomes such as developing PASC.
Collapse
Affiliation(s)
- Bridget A. Baxter
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michaela G. Ryan
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephanie M. LaVergne
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sophia Stromberg
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kailey Berry
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Madison Tipton
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole Natter
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Nikiah Nudell
- Medical Center of the Rockies, University of Colorado Health, Loveland, CO 80538, USA
| | - Kim McFann
- Medical Center of the Rockies, University of Colorado Health, Loveland, CO 80538, USA
| | - Julie Dunn
- Medical Center of the Rockies, University of Colorado Health, Loveland, CO 80538, USA
| | - Tracy L. Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth P. Ryan
- Department of Environmental Radiological Health Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: ; Tel.: +1-970-491-1936
| |
Collapse
|
11
|
Badawi S, Mohamed FE, Alkhofash NR, John A, Ali A, Ali BR. Characterization of ACE2 naturally occurring missense variants: impact on subcellular localization and trafficking. Hum Genomics 2022; 16:35. [PMID: 36056420 PMCID: PMC9438391 DOI: 10.1186/s40246-022-00411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human angiotensin-converting enzyme 2 (ACE2), a type I transmembrane receptor physiologically acting as a carboxypeptidase enzyme within the renin-angiotensin system (RAS), is a critical mediator of infection by several severe acute respiratory syndrome (SARS) corona viruses. For instance, it has been demonstrated that ACE2 is the primary receptor for the SARS-CoV-2 entry to many human cells through binding to the viral spike S protein. Consequently, genetic variability in ACE2 gene has been suggested to contribute to the variable clinical manifestations in COVID-19. Many of those genetic variations result in missense variants within the amino acid sequence of ACE2. The potential effects of those variations on binding to the spike protein have been speculated and, in some cases, demonstrated experimentally. However, their effects on ACE2 protein folding, trafficking and subcellular targeting have not been established. RESULTS In this study we aimed to examine the potential effects of 28 missense variants (V801G, D785N, R768W, I753T, L731F, L731I, I727V, N720D, R710H, R708W, S692P, E668K, V658I, N638S, A627V, F592L, G575V, A501T, I468V, M383I, G173S, N159S, N149S, D38E, N33D, K26R, I21T, and S19P) distributed across the ACE2 receptor domains on its subcellular trafficking and targeting through combinatorial approach involving in silico analysis and experimental subcellular localization analysis. Our data show that none of the studied missense variants (including 3 variants predicted to be deleterious R768W, G575V, and G173S) has a significant effect on ACE2 intracellular trafficking and subcellular targeting to the plasma membrane. CONCLUSION Although the selected missense variants display no significant change in ACE2 trafficking and subcellular localization, this does not rule out their effect on viral susceptibility and severity. Further studies are required to investigate the effect of ACE2 variants on its expression, binding, and internalization which might explain the variable clinical manifestations associated with the infection.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Nesreen R. Alkhofash
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
12
|
Lumpuy-Castillo J, Vales-Villamarín C, Mahíllo-Fernández I, Pérez-Nadador I, Soriano-Guillén L, Lorenzo O, Garcés C. Association of ACE2 Polymorphisms and Derived Haplotypes With Obesity and Hyperlipidemia in Female Spanish Adolescents. Front Cardiovasc Med 2022; 9:888830. [PMID: 35586646 PMCID: PMC9108422 DOI: 10.3389/fcvm.2022.888830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundIn the cardiovascular (CV) system, overactivation of the angiotensin converting enzyme (ACE) may trigger deleterious responses derived from angiotensin (Ang)-II, which can be attenuated by stimulation of ACE2 and subsequent Ang-(1-7) metabolite. However, ACE2 exhibits a high degree of genetic polymorphism that may affect its structure and stability, interfering with these cardioprotective actions. The aim of this study was to analyse the relationship of ACE2 polymorphisms with cardiovascular risk factors in children.MethodologyFive ACE2-single nucleotide polymorphisms (SNP), rs4646188, rs2158083, rs233575, rs879922, and rs2074192, previously related to CV risk factors, were analyzed in a representative sample of 12–16-year-old children and tested for their potential association with anthropometric parameters, insulin levels and the lipid profile.ResultsGirls (N = 461) exhibited lower rates of overweight, obesity, blood pressure, and glycemia than boys (N = 412), though increased plasma lipids. The triglycerides (TG)/HDL-C ratio was, however, lower in females. Interestingly, only in girls, the occurrence of overweight/obesity was associated with the SNPs rs879922 [OR 1.67 (1.02–2.75)], rs233575 [OR 1.98 (1.21- 3.22)] and rs2158083 [OR 1.67 (1.04–2.68)]. Also, TG levels were linked to the rs879922, rs233575, and rs2158083 SNPs, and the TG/HDL-C ratio was associated with rs879922 and rs233575. Levels of TC and LDL-C were associated with rs2074192 and rs2158083. Furthermore, the established cut-off level for TG ≥ 90 mg/dL was related to rs879922 [OR 1.78 (1.06–2.96)], rs2158083 [OR 1.75 (1.08–2.82)], and rs233575 [OR 1.62 (1.00–2.61)]. The cut-off level for TC ≥ 170 mg/dL was associated with rs2074192 OR 1.54 (1.04–2.28) and rs2158083 [OR 1.53 (1.04–2.25)]. Additionally, the haplotype (C-G-C) derived from rs879922-rs2158083-rs233575 was related to higher prevalence of overweight/obesity and TG elevation.ConclusionThe expression and activity of ACE2 may be essential for CV homeostasis. Interestingly, the ACE2-SNPs rs879922, rs233575, rs2158083 and rs2074192, and the haplotype (C-G-C) of the three former could induce vulnerability to obesity and hyperlipidemia in women. Thus, these SNPs might be used as predictive biomarkers for CV diseases and as molecular targets for CV therapy.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | | | | | - Iris Pérez-Nadador
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
- *Correspondence: Oscar Lorenzo
| | - Carmen Garcés
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
13
|
Zhang M, Liang Y, Yu D, Du B, Cheng W, Li L, Yu Z, Luo S, Zhang Y, Wang H, Zhang X, Zhang W. A systematic review of Vaccine Breakthrough Infections by SARS-CoV-2 Delta Variant. Int J Biol Sci 2022; 18:889-900. [PMID: 35002532 PMCID: PMC8741840 DOI: 10.7150/ijbs.68973] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Mengxin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ying Liang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Shuying Luo
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Huanmin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| |
Collapse
|
14
|
Redondo N, Navarro D, Aguado JM, Fernández-Ruiz M. Human genetic polymorphisms and risk of viral infection after solid organ transplantation. Transplant Rev (Orlando) 2021; 36:100669. [PMID: 34688126 DOI: 10.1016/j.trre.2021.100669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
The immune system plays a key role in the host defense against viral pathogens. A signaling cascade is activated upon infection involving a variety of molecules such as pattern-recognition receptors (PRRs), interleukins or antiviral interferons. Long-term immunosuppression after solid organ transplantation (SOT) mainly abrogates adaptive T-cell-mediated responses, thus highlighting the relative contribution of innate immunity. Single-nucleotide polymorphisms (SNPs) within genes coding for PRRs or soluble mediators have been associated with differential susceptibility to viral infections among SOT recipients. A protective effect against cytomegalovirus (CMV) infection or disease has been attributed to certain SNPs in TLR9 or IFNL3 genes, whereas the opposite effect has been attributed to genetic polymorphisms in TLR2, MBL2, DC-SIGN, IL10 or IFNG. The presence of SNPs in other molecules not directly involved in innate or adaptive immune responses such as aquaporins or pregnane X appear to modulate the risk of CMV or BK polyomavirus infection, respectively. Little information is available on the genetic determinants of the post-transplant susceptibility to herpesviruses causing clinical infection (herpes simplex virus or varicella zoster virus) or the replication kinetics of components of the human blood virome used as immune surrogates (Torque teno virus). The present review critically summarizes the current knowledge on how SNP genotyping would be useful to stratify SOT recipients according to the individual risk of viral infection and proposes next research steps. Genetic susceptibility testing may improve personalized medicine and contribute to minimize the risk of viral infection after SOT.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.
| | - David Navarro
- Department of Microbiology, Hospital Clínico Universitario, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain; Department of Microbiology, School of Medicine, Universidad de Valencia, Valencia, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|