1
|
Jagadeesh V, Okahashi N, Matsuda F, Tsuge K, Kondo A. Combinatorial Nonribosomal Peptide Synthetase Libraries Using the SEAM-Combi-OGAB Method. ACS Synth Biol 2025; 14:520-530. [PMID: 39907600 DOI: 10.1021/acssynbio.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
To overcome the difficulty of building large nonribosomal peptide synthetase (NRPS) gene cluster libraries, an efficient one-pot method using Bacillus subtilis was developed. This new method, named Seamed Express Assembly Method (SEAM)-combi-Ordered Gene Assembly in Bacillus subtilis (OGAB), combines the SEAM-OGAB approach for NRPS gene cluster construction with the combi-OGAB method for combinatorial DNA library construction to randomly swap DNA fragments for NRPS modules. In this study, NRPS gene clusters of plipastatin and gramicidin S were used as the starting material. The full length of each gene cluster was prepared as plasmid DNA by introducing restriction enzyme SfiI sites into the module border according to SEAM-OGAB. These two plasmids were mixed, digested with SfiI, ligated in a tandem repeat form, and used to transform B. subtilis according to the combi-OGAB method. While 64 of all the possible combinations were used in the calculation, 32 types of plasmid DNA were obtained from 50 randomly selected transformants. These transformants produced at least 30 types of peptides, including cyclic and linear variations with lengths ranging from 5 to 10 amino acids. Thus, this method enabled an efficient construction of NRPS gene cluster libraries with more than five module members, making it advantageous for applications in peptide libraries.
Collapse
Affiliation(s)
- Varada Jagadeesh
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Japan
- Department of Biotechnology, Osaka University Shimadzu Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Kostka M, Krug D, Herrmann J, Dickschat JS, Meyer J, Müller R, Schulz S. Identification by Synthesis: Imidacins, Urocanate-Derived Alkaloids from the Myxobacterium Stigmatella aurantiaca. Org Lett 2024; 26:6359-6363. [PMID: 39037587 DOI: 10.1021/acs.orglett.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Innovative discovery approaches such as genome-mining and metabolomics-inspired methods have reshaped the natural product research field, complementing traditional bioactivity-based screens and allowing hitherto unseen compounds to be uncovered from previously investigated producers. In line with these trends, we report here imidacins, a novel class of secondary metabolites specific to the myxobacterial genus Stigmatella. A combination of secondary metabolome analysis, genome-mining techniques, spectroscopic analysis, and finally total synthesis was used to allow structure elucidation. Imidacins are urocanate-derived aliphatic acids with an adjacent cyclopropane moiety, structural features unprecedented in natural products to date.
Collapse
Affiliation(s)
- Michael Kostka
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jeroen S Dickschat
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Julia Meyer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Microbial Natural Products, Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Universität des Saarlandes, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
4
|
Jian X, Pang F, Hobson C, Jenner M, Alkhalaf LM, Challis GL. Antibiotic Skeletal Diversification via Differential Enoylreductase Recruitment and Module Iteration in trans-Acyltransferase Polyketide Synthases. J Am Chem Soc 2024; 146:6114-6124. [PMID: 38389455 PMCID: PMC10921412 DOI: 10.1021/jacs.3c13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Microorganisms are remarkable chemists capable of assembling complex molecular architectures that penetrate cells and bind biomolecular targets with exquisite selectivity. Consequently, microbial natural products have wide-ranging applications in medicine and agriculture. How the "blind watchmaker" of evolution creates skeletal diversity is a key question in natural products research. Comparative analysis of biosynthetic pathways to structurally related metabolites is an insightful approach to addressing this. Here, we report comparative biosynthetic investigations of gladiolin, a polyketide antibiotic from Burkholderia gladioli with promising activity against multidrug-resistant Mycobacterium tuberculosis, and etnangien, a structurally related antibiotic produced by Sorangium cellulosum. Although these metabolites have very similar macrolide cores, their C21 side chains differ significantly in both length and degree of saturation. Surprisingly, the trans-acyltransferase polyketide synthases (PKSs) that assemble these antibiotics are almost identical, raising intriguing questions about mechanisms underlying structural diversification in this important class of biosynthetic assembly line. In vitro reconstitution of key biosynthetic transformations using simplified substrate analogues, combined with gene deletion and complementation experiments, enabled us to elucidate the origin of all the structural differences in the C21 side chains of gladiolin and etnangien. The more saturated gladiolin side chain arises from a cis-acting enoylreductase (ER) domain in module 1 and in trans recruitment of a standalone ER to module 5 of the PKS. Remarkably, module 5 of the gladiolin PKS is intrinsically iterative in the absence of the standalone ER, accounting for the longer side chain in etnangien. These findings have important implications for biosynthetic engineering approaches to the creation of novel polyketide skeletons.
Collapse
Affiliation(s)
- Xinyun Jian
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC
Centre of Excellence for Innovations in Protein and Peptide Science, Monash University, Clayton, VIC 3800, Australia
| | - Fang Pang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Christian Hobson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew Jenner
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
| | - Lona M. Alkhalaf
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Gregory L. Challis
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Integrative Synthetic Biology Centre, University
of Warwick, Coventry CV4 7AL, U.K.
- Department
of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC
Centre of Excellence for Innovations in Protein and Peptide Science, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 2023; 174:104079. [PMID: 37169232 DOI: 10.1016/j.resmic.2023.104079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Myxobacteria are Gram-negative eubacteria and they thrive in a variety of habitats including soil rich in organic matter, rotting wood, animal dung and marine environment. Myxobacteria are a promising source of new compounds associated with diverse bioactive spectrum and unique mode of action. The genome information of myxobacteria has revealed many orphan biosynthetic pathways indicating that these bacteria can be the source of several novel natural products. In this review, we highlight the biology of myxobacteria with emphasis on their habitat, life cycle, isolation methods and enlist all the bioactive secondary metabolites purified till date and their mode of action.
Collapse
Affiliation(s)
- Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, India - 144004.
| | - Amar Nath
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| | - Shiv Kumar
- Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| |
Collapse
|
6
|
Xu Q, Zou H, Pan C, Wang H, Shen Y, Li Y. Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces. Chin J Nat Med 2023; 21:454-458. [PMID: 37407176 DOI: 10.1016/s1875-5364(23)60473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 07/07/2023]
Abstract
Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.
Collapse
Affiliation(s)
- Qiushuang Xu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haochen Zou
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Pan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Murphy A, Corney M, Monson RE, Matilla MA, Salmond GPC, Leeper FJ. Biosynthesis of Antifungal Solanimycin May Involve an Iterative Nonribosomal Peptide Synthetase Module. ACS Chem Biol 2023; 18:1148-1157. [PMID: 37068480 PMCID: PMC10204066 DOI: 10.1021/acschembio.2c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Dickeya solani, a plant-pathogenic bacterium, produces solanimycin, a potent hybrid polyketide/nonribosomal peptide (PKS/NRPS) anti-fungal compound. The biosynthetic gene cluster responsible for synthesis of this compound has been identified. Because of instability, the complete structure of the compound has not yet been elucidated, but LC-MS2 identified that the cluster produces two main compounds, solanimycin A and B, differing by a single hydroxyl group. The fragmentation pattern revealed that the central part of solanimycin A is a hexapeptide, Gly-Dha-Dha-Dha-Dha-Dha (where Dha is dehydroalanine). This is supported by isotopic labeling studies using labeled serine and glycine. The N-terminal group is a polyketide-derived C16 acyl group containing a conjugated hexaene, a hydroxyl, and an amino group. The additional hydroxyl group in solanimycin B is on the α-carbon of the glycine residue. The incorporation of five sequential Dha residues is unprecedented because there is only one NRPS module in the cluster that is predicted to activate and attach serine (which is subsequently dehydrated to Dha), meaning that this NRPS module must act iteratively. While a few other iterative NRPS modules are known, they all involve iteration of two or three modules. We believe that the repetitive use of a single module makes the solanimycin biosynthetic pathway unique among NRPSs so far reported.
Collapse
Affiliation(s)
- Annabel
C. Murphy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Matthew Corney
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rita E. Monson
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Miguel A. Matilla
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - George P. C. Salmond
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
8
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
9
|
Lapuhs P, Heinrich E, Garcia R, Goes A, Frank N, Bollenbach L, Stibane V, Kuhn T, Koch M, Kiemer AK, Müller R, Fuhrmann K, Fuhrmann G. The inherent antibiotic activity of myxobacteria-derived autofluorescent outer membrane vesicles is switched on and off by light stimulation. NANOSCALE 2022; 14:17534-17542. [PMID: 36416362 DOI: 10.1039/d2nr02743g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Outer membrane vesicles are small, lipid-based vesicles shed from the outer membrane of Gram-negative bacteria. They are becoming increasingly recognised as important factors for resistance gene transfer, bacterial virulence factors and host cell modulation. The presence of pathogenic factors and antimicrobial compounds in bacterial vesicles has been proven in recent years, but it remains unclear, if and how environmental factors, such as light specifically regulate the vesicle composition. We report the first example of autofluorescent vesicles derived from non-pathogenic soil-living myxobacteria. These vesicles additionally showed inherent antibiotic activity, a property that is specifically regulated by light stimulation of the producing bacteria. Our data provide a central basis for better understanding the environmental impact on bacteria-derived vesicles, and design of future therapeutic options.
Collapse
Affiliation(s)
- Philipp Lapuhs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Adriely Goes
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Nicolas Frank
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Lukas Bollenbach
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Veronika Stibane
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
| | - Thomas Kuhn
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Kathrin Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O, Rather IA, Rahman S, Shah AA, Jan AT. Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study. Pharmaceutics 2021; 13:1265. [PMID: 34452226 PMCID: PMC8401837 DOI: 10.3390/pharmaceutics13081265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | | | - Mujtaba Aamir Bhat
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Mohammad Iqbal Banday
- Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Ommer Bashir
- Department of School Education, Jammu 181205, Jammu and Kashmir, India;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Arif Tasleem Jan
- Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
12
|
Behsaz B, Bode E, Gurevich A, Shi YN, Grundmann F, Acharya D, Caraballo-Rodríguez AM, Bouslimani A, Panitchpakdi M, Linck A, Guan C, Oh J, Dorrestein PC, Bode HB, Pevzner PA, Mohimani H. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat Commun 2021; 12:3225. [PMID: 34050176 PMCID: PMC8163882 DOI: 10.1038/s41467-021-23502-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.
Collapse
Affiliation(s)
- Bahar Behsaz
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edna Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia
| | - Yan-Ni Shi
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Grundmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Deepa Acharya
- Tiny Earth Chemistry Hub, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Annabell Linck
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Changhui Guan
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt & Senckenberg Research Institute, Frankfurt am Main, Germany.
- Max-Planck-Institute for Terrestrial Microbiology, Department for Natural Products in Organismic Interactions, Marburg, Germany.
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Wenski SL, Cimen H, Berghaus N, Fuchs SW, Hazir S, Bode HB. Fabclavine diversity in Xenorhabdus bacteria. Beilstein J Org Chem 2020; 16:956-965. [PMID: 32461774 PMCID: PMC7214866 DOI: 10.3762/bjoc.16.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus. In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.
Collapse
Affiliation(s)
- Sebastian L Wenski
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Harun Cimen
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Natalie Berghaus
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sebastian W Fuchs
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Selcuk Hazir
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Reimer JM, Eivaskhani M, Harb I, Guarné A, Weigt M, Schmeing TM. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 2020; 366:366/6466/eaaw4388. [PMID: 31699907 DOI: 10.1126/science.aaw4388] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are biosynthetic enzymes that synthesize natural product therapeutics using a modular synthetic logic, whereby each module adds one aminoacyl substrate to the nascent peptide. We have determined five x-ray crystal structures of large constructs of the NRPS linear gramicidin synthetase, including a structure of a full core dimodule in conformations organized for the condensation reaction and intermodular peptidyl substrate delivery. The structures reveal differences in the relative positions of adjacent modules, which are not strictly coupled to the catalytic cycle and are consistent with small-angle x-ray scattering data. The structures and covariation analysis of homologs allowed us to create mutants that improve the yield of a peptide from a module-swapped dimodular NRPS.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Maximilian Eivaskhani
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Alba Guarné
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - T Martin Schmeing
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
16
|
Bader CD, Panter F, Müller R. In depth natural product discovery - Myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv 2019; 39:107480. [PMID: 31707075 DOI: 10.1016/j.biotechadv.2019.107480] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
In recognition of many microorganisms ability to produce a variety of secondary metabolites in parallel, Zeeck and coworkers introduced the term "OSMAC" (one strain many compounds) around the turn of the century. Since then, additional efforts focused on the systematic characterization of a single bacterial species ability to form multiple secondary metabolite scaffolds. With the beginning of the genomic era mainly initiated by a dramatic reduction of sequencing costs, investigations of the genome encoded biosynthetic potential and especially the exploitation of biosynthetic gene clusters of undefined function gained attention. This was seen as a novel means to extend range and diversity of bacterial secondary metabolites. Genome analyses showed that even for well-studied bacterial strains, like the myxobacterium Myxococcus xanthus DK1622, many biosynthetic gene clusters are not yet assigned to their corresponding hypothetical secondary metabolites. In contrast to the results from emerging genome and metabolome mining techniques that show the large untapped biosynthetic potential per strain, many newly isolated bacterial species are still used for the isolation of only one target compound class and successively abandoned in the sense that no follow up studies are published from the same species. This work provides an overview about myxobacterial bacterial strains, from which not just one but multiple different secondary metabolite classes were successfully isolated. The underlying methods used for strain prioritization and natural product discovery such as biological characterization of crude extracts against a panel of pathogens, in-silico prediction of secondary metabolite abundance from genome data and state of the art instrumental analytics required for new natural product scaffold discovery in comparative settings are summarized and classified according to their output. Furthermore, for each approach selected studies performed with actinobacteria are shown to underline especially innovative methods used for natural product discovery.
Collapse
Affiliation(s)
- Chantal D Bader
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Fabian Panter
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.
| |
Collapse
|
17
|
Gregory K, Salvador LA, Akbar S, Adaikpoh BI, Stevens DC. Survey of Biosynthetic Gene Clusters from Sequenced Myxobacteria Reveals Unexplored Biosynthetic Potential. Microorganisms 2019; 7:E181. [PMID: 31238501 PMCID: PMC6616573 DOI: 10.3390/microorganisms7060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023] Open
Abstract
Coinciding with the increase in sequenced bacteria, mining of bacterial genomes for biosynthetic gene clusters (BGCs) has become a critical component of natural product discovery. The order Myxococcales, a reputable source of biologically active secondary metabolites, spans three suborders which all include natural product producing representatives. Utilizing the BiG-SCAPE-CORASON platform to generate a sequence similarity network that contains 994 BGCs from 36 sequenced myxobacteria deposited in the antiSMASH database, a total of 843 BGCs with lower than 75% similarity scores to characterized clusters within the MIBiG database are presented. This survey provides the biosynthetic diversity of these BGCs and an assessment of the predicted chemical space yet to be discovered. Considering the mere snapshot of myxobacteria included in this analysis, these untapped BGCs exemplify the potential for natural product discovery from myxobacteria.
Collapse
Affiliation(s)
- Katherine Gregory
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Laura A Salvador
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Shukria Akbar
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Barbara I Adaikpoh
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - D Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
18
|
Thynne E, Mead OL, Chooi YH, McDonald MC, Solomon PS. Acquisition and Loss of Secondary Metabolites Shaped the Evolutionary Path of Three Emerging Phytopathogens of Wheat. Genome Biol Evol 2019; 11:890-905. [PMID: 30793159 PMCID: PMC6431248 DOI: 10.1093/gbe/evz037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
White grain disorder is a recently emerged wheat disease in Australia, caused by Eutiarosporella darliae, E. pseudodarliae, and E. tritici-australis. The disease cycle of these pathogens and the molecular basis of their interaction with wheat are poorly understood. To address this knowledge gap, we undertook a comparative genomics analysis focused on the secondary metabolite gene repertoire among these three species. This analysis revealed a diverse array of secondary metabolite gene clusters in these pathogens, including modular polyketide synthase genes. These genes have only been previously associated with bacteria and this is the first report of such genes in fungi. Subsequent phylogenetic analyses provided strong evidence that the modular PKS genes were horizontally acquired from a bacterial or a protist species. We also uncovered a secondary metabolite gene cluster with three polyketide/nonribosomal peptide synthase genes (Hybrid-1, -2, and -3) in E. darliae and E. pseudodarliae. In contrast, only remnant and partial genes homologous to this cluster were identified in E. tritici-australis, suggesting loss of this cluster. Homologues of Hybrid-2 in other fungi have been proposed to facilitate disease in woody plants, suggesting a possible alternative host range for E. darliae and E. pseudodarliae. Subsequent assays confirmed that E. darliae and E. pseudodarliae were both pathogenic on woody plants, but E. tritici-australis was not, implicating woody plants as potential host reservoirs for the fungi. Combined, these data have advanced our understanding of the lifestyle and potential host-range of these recently emerged wheat pathogens and shed new light on fungal secondary metabolism.
Collapse
Affiliation(s)
- Elisha Thynne
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Oliver L Mead
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Australia
| | - Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
19
|
Moss NA, Seiler G, Leão TF, Castro-Falcón G, Gerwick L, Hughes CC, Gerwick WH. Nature's Combinatorial Biosynthesis Produces Vatiamides A-F. Angew Chem Int Ed Engl 2019; 58:9027-9031. [PMID: 31071229 DOI: 10.1002/anie.201902571] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Hybrid type I PKS/NRPS biosynthetic pathways typically proceed in a collinear manner wherein one molecular building block is enzymatically incorporated in a sequence that corresponds to gene arrangement. In this work, genome mining combined with the use of a fluorogenic azide-based click probe led to the discovery and characterization of vatiamides A-F, three structurally diverse alkynylated lipopeptides, and their brominated analogues, from the cyanobacterium Moorea producens ASI16Jul14-2. These derive from a unique combinatorial non-collinear PKS/NRPS system encoded by a 90 kb gene cluster in which an upstream PKS cassette interacts with three separate cognate NRPS partners. This is facilitated by a series of promiscuous intermodule PKS-NRPS docking motifs possessing identical amino acid sequences. This interaction confers a new type of combinatorial capacity for creating molecular diversity in microbial systems.
Collapse
Affiliation(s)
- Nathan A Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Grant Seiler
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tiago F Leão
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
20
|
Moss NA, Seiler G, Leão TF, Castro‐Falcón G, Gerwick L, Hughes CC, Gerwick WH. Nature's Combinatorial Biosynthesis Produces Vatiamides A–F. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan A. Moss
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Grant Seiler
- Department of Chemistry and BiochemistryUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Tiago F. Leão
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Gabriel Castro‐Falcón
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Lena Gerwick
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Chambers C. Hughes
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - William H. Gerwick
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
21
|
Zhou ZZ, Zhu HJ, Lin LP, Zhang X, Ge HM, Jiao RH, Tan RX. Dalmanol biosyntheses require coupling of two separate polyketide gene clusters. Chem Sci 2018; 10:73-82. [PMID: 30746075 PMCID: PMC6335865 DOI: 10.1039/c8sc03697g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood.
Polyketide–polyketide hybrids are unique natural products with promising bioactivity, but the hybridization processes remain poorly understood. Herein, we present that the biosynthetic pathways of two immunosuppressants, dalmanol A and acetodalmanol A, result from an unspecific monooxygenase triggered hybridization of two distinct polyketide (naphthalene and chromane) biosynthetic gene clusters. The orchestration of the functional dimorphism of the polyketide synthase (ChrA) ketoreductase (KR) domain (shortened as ChrA KR) with that of the KR partner (ChrB) in the bioassembly line increases the polyketide diversity and allows the fungal generation of plant chromanes (e.g., noreugenin) and phloroglucinols (e.g., 2,4,6-trihydroxyacetophenone). The simultaneous fungal biosynthesis of 1,3,6,8- and 2-acetyl-1,3,6,8-tetrahydroxynaphthalenes was addressed as well. Collectively, the work may symbolize a movement in understanding the multiple-gene-cluster involved natural product biosynthesis, and highlights the possible fungal generations of some chromane- and phloroglucinol-based phytochemicals.
Collapse
Affiliation(s)
- Zhen Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China.,State Key Laboratory Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China .
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology , Institute of Functional Biomolecules , Nanjing University , Nanjing 210023 , China . .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
22
|
Yan F, Burgard C, Popoff A, Zaburannyi N, Zipf G, Maier J, Bernauer HS, Wenzel SC, Müller R. Synthetic biology approaches and combinatorial biosynthesis towards heterologous lipopeptide production. Chem Sci 2018; 9:7510-7519. [PMID: 30319751 PMCID: PMC6180311 DOI: 10.1039/c8sc02046a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Synthetic biology techniques coupled with heterologous secondary metabolite production offer opportunities for the discovery and optimisation of natural products.
Synthetic biology techniques coupled with heterologous secondary metabolite production offer opportunities for the discovery and optimisation of natural products. Here we developed a new assembly strategy based on type IIS endonucleases and elaborate synthetic DNA platforms, which could be used to seamlessly assemble and engineer biosynthetic gene clusters (BGCs). By applying this versatile tool, we designed and assembled more than thirty different artificial myxochromide BGCs, each around 30 kb in size, and established heterologous expression platforms using a derivative of Myxococcus xanthus DK1622 as a host. In addition to the five native types of myxochromides (A, B, C, D and S), novel lipopeptide structures were produced by combinatorial exchange of nonribosomal peptide synthetase (NRPS) encoding genes from different myxochromide BGCs. Inspired by the evolutionary diversification of the native myxochromide megasynthetases, the ancestral A-type NRPS was engineered by inactivation, deletion, or duplication of catalytic domains and successfully converted into functional B-, C- and D-type megasynthetases. The constructional design approach applied in this study enables combinatorial engineering of complex synthetic BGCs and has great potential for the exploitation of other natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Fu Yan
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| | - Christian Burgard
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| | - Alexander Popoff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| | - Nestor Zaburannyi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| | - Gregor Zipf
- ATG:biosynthetics GmbH , Weberstraße 40 , 79249 Merzhausen , Germany
| | - Josef Maier
- IStLS - Information Services to Life Sciences , Härlestraße 24/1 , 78727 Oberndorf am Neckar/Boll , Germany
| | - Hubert S Bernauer
- ATG:biosynthetics GmbH , Weberstraße 40 , 79249 Merzhausen , Germany
| | - Silke C Wenzel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University , Saarland University Campus , Building E8.1 , 66123 Saarbrücken , Germany .
| |
Collapse
|
23
|
Gao L, Guo J, Fan Y, Ma Z, Lu Z, Zhang C, Zhao H, Bie X. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microb Cell Fact 2018; 17:84. [PMID: 29855381 PMCID: PMC5984369 DOI: 10.1186/s12934-018-0929-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/11/2018] [Indexed: 12/04/2022] Open
Abstract
Background Plipastatin, an antifungal lipopeptide, is synthesized by a non-ribosomal peptide synthetase (NRPS) in Bacillus subtilis. However, little information is available on the combinatorial biosynthesis strategies applied in plipastatin biosynthetic pathway. In this study, we applied module or individual domain deletion strategies to engineer the plipastatin biosynthetic pathway, and investigated the effect of deletions on the plipastatin assembly line, as well as revealed the synthetic patterns of novel lipopeptides. Results Module deletion inactivated the entire enzyme complex, whereas individual domain (A/T domain) deletion within module 7 truncated the assembly line, resulting in truncated linear hexapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Ala/Val). Interestingly, within the module 6 catalytic unit, the effect of thiolation domain deletion differed from that of adenylation deletion. Absence of the T6-domain resulted in a nonproductive strain, whereas deletion of the A6-domain resulted in multiple assembly lines via module-skipping mechanism, generating three novel types of plipastatin derivatives, pentapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu), hexapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Ile), and octapeptides (C16~17β-OHFA-Glu-Orn-Tyr-Thr-Glu-Gln-Tyr-Ile). Conclusions Notably, a unique module-skipping process occurred following deletion of the A6-domain, which has not been previously reported for engineered NRPS systems. This finding provides new insight into the lipopeptides engineering. It is of significant importance for combinatorial approaches and should be taken into consideration in engineering non-ribosomal peptide biosynthetic pathways for generating novel lipopeptides. Electronic supplementary material The online version of this article (10.1186/s12934-018-0929-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Gao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Jianping Guo
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Yun Fan
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
24
|
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 2018. [DOI: 10.1039/c7np00047b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin.
Collapse
Affiliation(s)
- J. Janata
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - Z. Kamenik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - R. Gazak
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - S. Kadlcik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - L. Najmanova
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| |
Collapse
|
25
|
Brandt P, García-Altares M, Nett M, Hertweck C, Hoffmeister D. Induced Chemical Defense of a Mushroom by a Double-Bond-Shifting Polyene Synthase. Angew Chem Int Ed Engl 2017; 56:5937-5941. [DOI: 10.1002/anie.201700767] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Philip Brandt
- Department Pharmaceutical Microbiology at the Hans Knöll Institute; Friedrich-Schiller-Universität; Winzerlaer Strasse 2 07745 Jena Germany
| | - María García-Altares
- Department Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology; Beutenbergstrasse 11a 07745 Jena Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering; Technical University Dortmund; Emil-Figge-Strasse 66 44227 Dortmund Germany
| | - Christian Hertweck
- Department Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology; Beutenbergstrasse 11a 07745 Jena Germany
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans Knöll Institute; Friedrich-Schiller-Universität; Winzerlaer Strasse 2 07745 Jena Germany
| |
Collapse
|
26
|
Brandt P, García-Altares M, Nett M, Hertweck C, Hoffmeister D. Induzierte chemische Verteidigung eines Ständerpilzes durch eine doppelbindungsverschiebende Polyensynthase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Brandt
- Department Pharmazeutische Mikrobiologie am Hans-Knöll-Institut; Friedrich-Schiller-Universität; Winzerlaer Str. 2 07745 Jena Deutschland
| | - María García-Altares
- Department Biomolekulare Chemie; Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie; Beutenbergstr. 11a 07745 Jena Deutschland
| | - Markus Nett
- Fakultät Bio- und Chemieingenieurwesen; Technische Universität Dortmund; Emil-Figge-Straße 66 44227 Dortmund Deutschland
| | - Christian Hertweck
- Department Biomolekulare Chemie; Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie; Beutenbergstr. 11a 07745 Jena Deutschland
| | - Dirk Hoffmeister
- Department Pharmazeutische Mikrobiologie am Hans-Knöll-Institut; Friedrich-Schiller-Universität; Winzerlaer Str. 2 07745 Jena Deutschland
| |
Collapse
|
27
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
28
|
Burgard C, Zaburannyi N, Nadmid S, Maier J, Jenke-Kodama H, Luxenburger E, Bernauer HS, Wenzel SC. Genomics-Guided Exploitation of Lipopeptide Diversity in Myxobacteria. ACS Chem Biol 2017; 12:779-786. [PMID: 28128551 DOI: 10.1021/acschembio.6b00953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of 122 myxobacterial genome sequences suggested 16 strains as producers of the myxochromide lipopeptide family. Detailed sequence comparison of the respective mch biosynthetic gene clusters informed a genome-mining approach, ultimately leading to the discovery and chemical characterization of four novel myxochromide core types. The myxochromide megasynthetase is subject to evolutionary diversification, resulting in considerable structural diversity of biosynthesis products. The observed differences are due to the number, type, sequence, and configuration of the incorporated amino acids. The analysis revealed molecular details on how point mutations and recombination events led to structural diversity. It also gave insights into the evolutionary scenarios that have led to the emergence of mch clusters in different strains and genera of myxobacteria.
Collapse
Affiliation(s)
- Christian Burgard
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Nestor Zaburannyi
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Suvd Nadmid
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Josef Maier
- IStLS − Information Services to Life Sciences, Härlestraße 24/1, 78727 Oberndorf am Neckar/Boll, Germany
| | - Holger Jenke-Kodama
- Microbiology
and Biochemistry of Secondary Metabolites Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Eva Luxenburger
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | | | - Silke C. Wenzel
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research and Pharmaceutical Biotechnology at Saarland
University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Discovery of Ibomycin, a Complex Macrolactone that Exerts Antifungal Activity by Impeding Endocytic Trafficking and Membrane Function. Cell Chem Biol 2016; 23:1383-1394. [PMID: 27746129 DOI: 10.1016/j.chembiol.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 01/10/2023]
Abstract
Natural products are invaluable historic sources of drugs for infectious diseases; however, the discovery of novel antimicrobial chemical scaffolds has waned in recent years. Concurrently, there is a pressing need for improved therapeutics to treat fungal infections. We employed a co-culture screen to identify ibomycin, a large polyketide macrolactone that has preferential killing activity against Cryptococcus neoformans. Using chemical and genome methods, we determined the structure of ibomycin and identified the biosynthetic cluster responsible for its synthesis. Chemogenomic profiling coupled with cell biological assays link ibomycin bioactivity to membrane function. The preferential activity of ibomycin toward C. neoformans is due to the ability of the compound to selectively permeate its cell wall. These results delineate a novel antifungal agent that is produced by one of the largest documented biosynthetic clusters to date and underscore the fact that there remains significant untapped chemical diversity of natural products with application in antimicrobial research.
Collapse
|
30
|
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes. Mar Drugs 2016; 14:md14040080. [PMID: 27092515 PMCID: PMC4849084 DOI: 10.3390/md14040080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 11/17/2022] Open
Abstract
Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.
Collapse
|
31
|
Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12:594-607. [PMID: 27340451 PMCID: PMC4902038 DOI: 10.3762/bjoc.12.58] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022] Open
Abstract
Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.
Collapse
Affiliation(s)
- Juliane Korp
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - María S Vela Gurovic
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) -CONICET- Carrindanga Km 11, Bahía Blanca 8000, Argentina
| | - Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Beutenbergstr. 11, 07745 Jena, Germany
- Department of Biochemical and Chemical Engineering, Technical Biology, Technical University Dortmund, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
32
|
Simonetti SO, Larghi EL, Kaufman TS. The 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-2(1H)-one alkaloids. Results of 20 years of research, uncovering a new family of natural products. Nat Prod Rep 2016; 33:1425-1446. [DOI: 10.1039/c6np00064a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The title alkaloids are discussed. Emphasis is placed on their isolation, source microorganisms and structure, as well as relevant biological activities and synthetic progress.
Collapse
Affiliation(s)
- Sebastian O. Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR)
- Facultad de Ciencias Bioquímicas y Farmacéuticas – Universidad Nacional de Rosario
- (2000) Rosario
- Argentina
| |
Collapse
|
33
|
Oßwald C, Zaburannyi N, Burgard C, Hoffmann T, Wenzel SC, Müller R. A highly unusual polyketide synthase directs dawenol polyene biosynthesis in Stigmatella aurantiaca. J Biotechnol 2014; 191:54-63. [DOI: 10.1016/j.jbiotec.2014.07.447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 01/29/2023]
|
34
|
Oßwald C, Zipf G, Schmidt G, Maier J, Bernauer HS, Müller R, Wenzel SC. Modular construction of a functional artificial epothilone polyketide pathway. ACS Synth Biol 2014; 3:759-72. [PMID: 23654254 DOI: 10.1021/sb300080t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Natural products of microbial origin continue to be an important source of pharmaceuticals and agrochemicals exhibiting potent activities and often novel modes of action. Due to their inherent structural complexity chemical synthesis is often hardly possible, leaving fermentation as the only viable production route. In addition, the pharmaceutical properties of natural products often need to be optimized for application by sophisticated medicinal chemistry and/or biosynthetic engineering. The latter requires a detailed understanding of the biosynthetic process and genetic tools to modify the producing organism that are often unavailable. Consequently, heterologous expression of complex natural product pathways has been in the focus of development over recent years. However, piecing together existing DNA cloned from natural sources and achieving efficient expression in heterologous circuits represent several limitations that can be addressed by synthetic biology. In this work we have redesigned and reassembled the 56 kb epothilone biosynthetic gene cluster from Sorangium cellulosum for expression in the high GC host Myxococcus xanthus. The codon composition was adapted to a modified codon table for M. xanthus, and unique restriction sites were simultaneously introduced and others eliminated from the sequence in order to permit pathway assembly and future interchangeability of modular building blocks from the epothilone megasynthetase. The functionality of the artificial pathway was demonstrated by successful heterologous epothilone production in M. xanthus at significant yields that have to be improved in upcoming work. Our study sets the stage for future engineering of epothilone biosynthesis and production optimization using a highly flexible assembly strategy.
Collapse
Affiliation(s)
- Corina Oßwald
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| | | | | | - Josef Maier
- IStLS, Information Services to Life Science, Oberndorf a.N., Germany
| | | | - Rolf Müller
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| | - Silke C. Wenzel
- Department
of Microbial Natural Products, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical
Biotechnology, Saarland University, Saarbrücken,
Germany
| |
Collapse
|
35
|
Nett M. Genome mining: concept and strategies for natural product discovery. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:199-245. [PMID: 25296440 DOI: 10.1007/978-3-319-04900-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Kadlčík S, Kučera T, Chalupská D, Gažák R, Koběrská M, Ulanová D, Kopecký J, Kutejová E, Najmanová L, Janata J. Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. PLoS One 2013; 8:e84902. [PMID: 24386435 PMCID: PMC3874040 DOI: 10.1371/journal.pone.0084902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accomodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin - but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit.
Collapse
Affiliation(s)
- Stanislav Kadlčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dominika Chalupská
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Gažák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Markéta Koběrská
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Ulanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kopecký
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eva Kutejová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovac Academy of Sciences, Bratislava, Slovakia
| | - Lucie Najmanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
37
|
Deane CD, Mitchell DA. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. J Ind Microbiol Biotechnol 2013; 41:315-31. [PMID: 24142337 DOI: 10.1007/s10295-013-1361-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/30/2013] [Indexed: 12/24/2022]
Abstract
Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as "reverse-discovered" natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.
Collapse
Affiliation(s)
- Caitlin D Deane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
38
|
Müller R, Wink J. Future potential for anti-infectives from bacteria - how to exploit biodiversity and genomic potential. Int J Med Microbiol 2013; 304:3-13. [PMID: 24119567 DOI: 10.1016/j.ijmm.2013.09.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The early stages of antibiotic development include the identification of novel hit compounds. Since actinomycetes and myxobacteria are still the most important natural sources of active metabolites, we provide an overview on these producers and discuss three of the most promising approaches toward finding novel anti-infectives from microorganisms. These are defined as the use of biodiversity to find novel producers, the variation of culture conditions and induction of silent genes, and the exploitation of the genomic potential of producers via "genome mining". Challenges that exist beyond compound discovery are outlined in the last section.
Collapse
Affiliation(s)
- Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), P.O. Box 151150, 66041 Saarbrücken, Germany; Helmholtz Centre for Infectious Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Joachim Wink
- Helmholtz Centre for Infectious Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
39
|
Jiang Y, Wang H, Lu C, Ding Y, Li Y, Shen Y. Identification and characterization of the cuevaene A biosynthetic gene cluster in streptomyces sp. LZ35. Chembiochem 2013; 14:1468-75. [PMID: 23824670 DOI: 10.1002/cbic.201300316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 01/29/2023]
Abstract
Genome sequence analysis of Streptomyces sp. LZ35 has revealed a large number of secondary metabolite pathways, including one encoded in an orphan type I polyketide synthase gene cluster that contains a putative chorismatase/3-hydroxybenzoate synthase gene. Mutagenesis and comparative metabolic profiling led to the identification of cuevaene A as the metabolic product of the gene cluster, thus making it the first 3-HBA containing polyketide biosynthetic gene cluster described to date. Cuv10 was proven to be responsible for the conversion of chorismate into 3-HBA; Cuv18 is speculated to be responsible for the 6-hydroxylation of 3-HBA during polyketide chain elongation. Additionally, several pathway-specific regulatory factors that affect the production of cuevaene A were identified. Our results indicate that targeted inactivation of a gene followed by comparative metabolic profiling is a useful approach to identify and characterize cryptic biosynthetic gene clusters.
Collapse
Affiliation(s)
- Yuhai Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan 250100, P. R. China
| | | | | | | | | | | |
Collapse
|
40
|
Anand S, Mohanty D. Computational Methods for Identification of Novel Secondary Metabolite Biosynthetic Pathways by Genome Analysis. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases like Polyketide Synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) which utilize a thiotemplate mechanism similar to that for fatty acid biosynthesis. Availability of complete genome sequences for an increasing number of microbial organisms has provided opportunities for using in silico genome mining to decipher the secondary metabolite natural product repertoire encoded by these organisms. Therefore, in recent years there have been major advances in development of computational methods which can analyze genome sequences to identify genes involved in secondary metabolite biosynthesis and help in deciphering the putative chemical structures of their biosynthetic products based on analysis of the sequence and structural features of the proteins encoded by these genes. These computational methods for deciphering the secondary metabolite biosynthetic code essentially involve identification of various catalytic domains present in this PKS/NRPS family of enzymes; a prediction of various reactions in these enzymatic domains and their substrate specificities and also precise identification of the order in which these domains would catalyze various biosynthetic steps. Structural bioinformatics analysis of known secondary metabolite biosynthetic clusters has helped in formulation of predictive rules for deciphering domain organization, substrate specificity, and order of substrate channeling. In this chapter, the progress in development of various computational methods is discussed by different research groups, and specifically, the utility in identification of novel metabolites by genome mining and rational design of natural product analogs by biosynthetic engineering studies.
Collapse
|
41
|
Galm U, Shen B. Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Expert Opin Drug Discov 2013; 1:409-37. [PMID: 23495943 DOI: 10.1517/17460441.1.5.409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis is playing an increasingly important role in natural product-based drug discovery and development programmes. This review highlights the requirements and challenges associated with this conceptually simple strategy of using surrogate hosts for the production of natural products in good yields and for the generation of novel analogues by combinatorial biosynthesis methods, taking advantage of the recombinant DNA technologies and tools available in the model hosts. Specific topics addressed include: i) the mobilisation of biosynthetic gene clusters using different vector systems; ii) the selection of suitable model heterologous hosts; iii) the requirement of post-translational protein modifications and precursor supply within the model hosts; iv) the influence of promoters and pathway regulators; and v) the choice of suitable fermentation conditions. Lastly, the use of heterologous expression in combinatorial biosynthesis is addressed. Future directions for model heterologous host engineering and the optimisation of natural product biosynthetic gene cluster expression in heterologous hosts are also discussed.
Collapse
Affiliation(s)
- Ute Galm
- Divison of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
42
|
ZHU LP, Li ZF, HAN K, LI SG, LI YZ. Novel Characters of Myxobacterial Modular Natural Product Assembly Lines*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl Microbiol Biotechnol 2012; 97:1213-22. [DOI: 10.1007/s00253-012-4268-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
44
|
Davidsen JM, Townsend CA. In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A. ACTA ACUST UNITED AC 2012; 19:297-306. [PMID: 22365611 DOI: 10.1016/j.chembiol.2011.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/12/2011] [Accepted: 10/24/2011] [Indexed: 02/02/2023]
Abstract
Two nonribosomal peptide synthetases (NRPS), NocA and NocB, together comprising five modules, are essential for the biosynthesis of the D,L,D configured tripeptide backbone of the monocyclic β-lactam nocardicin A. We report a double replacement gene strategy in which point mutations were engineered in the two encoding NRPS genes without disruption of the nocABC operon by placing selective markers in adjacent genes. A series of mutants was constructed to inactivate the thiolation (T) domain of each module and to evaluate an HHxxxDR catalytic motif in NocA and an atypical extended histidine motif in NocB. The loss of nocardicin A production in each of the T domain mutants indicates that all five modules are essential for its biosynthesis. Conversely, production of nocardicin A was not affected by mutation of the NocB histidine motif or the R828G mutation in NocA.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
45
|
Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol Lett 2012; 34:1393-403. [PMID: 22481301 DOI: 10.1007/s10529-012-0919-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Collapse
Affiliation(s)
- Katerina Nikolouli
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Eolou, 41221, Larissa, Greece
| | | |
Collapse
|
46
|
Pistorius D, Müller R. Discovery of the Rhizopodin Biosynthetic Gene Cluster in Stigmatella aurantiaca Sg a15 by Genome Mining. Chembiochem 2012; 13:416-26. [DOI: 10.1002/cbic.201100575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/06/2022]
|
47
|
Burkhart JL, Kazmaier U. A straightforward click-approach towards pretubulysin-analogues. RSC Adv 2012. [DOI: 10.1039/c2ra20191g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
48
|
Carr G, Seyedsayamdost MR, Chandler JR, Greenberg EP, Clardy J. Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org Lett 2011; 13:3048-51. [PMID: 21615115 PMCID: PMC3111747 DOI: 10.1021/ol200922s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 11/30/2022]
Abstract
A series of deletion mutants in the recently identified bactobolin biosynthetic pathway defined the roles of several key biosynthetic enzymes and showed how promiscuity in three enzyme systems allows this cluster to produce multiple products. Studies on the deletion mutants also led to four new bactobolin analogs that provide additional structure-activity relationships for this interesting antibiotic family.
Collapse
|
49
|
Süssmuth R, Müller J, von Döhren H, Molnár I. Fungal cyclooligomerdepsipeptides: From classical biochemistry to combinatorial biosynthesis. Nat Prod Rep 2011; 28:99-124. [DOI: 10.1039/c001463j] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Brakhage AA, Schroeckh V. Fungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genet Biol 2011; 48:15-22. [DOI: 10.1016/j.fgb.2010.04.004] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/12/2010] [Accepted: 04/21/2010] [Indexed: 12/22/2022]
|