1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025; 125:4840-4932. [PMID: 40378355 PMCID: PMC12123629 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| | - Claudia Lacombe
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Simindokht Rostami
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Arshia Arasteh Kani
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Andrea Borgonovo
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | | | - Gerald Striedner
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Birgit Wiltschi
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| |
Collapse
|
2
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
3
|
Fang KY, Lieblich SA, Tirrell DA. Incorporation of Non-Canonical Amino Acids into Proteins by Global Reassignment of Sense Codons. Methods Mol Biol 2018; 1798:173-186. [PMID: 29868959 DOI: 10.1007/978-1-4939-7893-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-canonical amino acids are finding increasing use in basic and applied research. Proteins that evolved naturally for biological function did so by exploiting the chemistries of the canonical amino acids; however, when proteins are repurposed for biomedical and pharmacological applications, they are often subject to conditions different from those characteristic of their original biological environments. Non-canonical amino acids can impart properties that are inaccessible within canonical protein sequence space, and can thereby lead to improved or new functionality. We describe simple methods for global replacement of canonical amino acids by their non-canonical counterparts in recombinant proteins made in high yield in bacterial expression hosts. These methods can be used to engineer both chemical and physical properties of recombinant proteins.
Collapse
Affiliation(s)
- Katharine Y Fang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Seth A Lieblich
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Roblin G, Laduranty J, Bonmort J, Aidene M, Chollet JF. Unsaturated amino acids derived from isoleucine trigger early membrane effects on plant cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:67-74. [PMID: 27254795 DOI: 10.1016/j.plaphy.2016.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Unsaturated amino acids (UnsAA) have been shown to affect the activity of various biological processes. However, their mode of action has been investigated poorly thus far. We show in this work that 2-amino-3-methyl-4-pentenoic acid (C2) and 2-amino-3-methyl-4-pentynoic acid (C3) structurally derived from isoleucine (Ile) exhibited a multisite action on plant cells. For one, C2 and C3 induced early modifications at the plasma membrane level, as shown by the hyperpolarization monitored by microelectrode implantation in the pulvinar cells of Mimosa pudica, indicating that these compounds are able to modify ionic fluxes. In particular, proton (H(+)) fluxes were modified, as shown by the pH rise monitored in the bathing medium of pulvinar tissues. A component of this effect may be linked to the inhibitory effect observed on the proton pumping and the vanadate-sensitive activity of the plasma membrane H(+)-ATPase monitored in plasma membrane vesicles (PMVs) purified from pulvinar tissues of M. pudica and leaf tissues of Beta vulgaris. This effect may explain, in part, the inhibitory effect of the compounds on the uptake capacity of sucrose and valine by B. vulgaris leaf tissues. In contrast, an unexpected action was observed in cell reactions, implicating ion fluxes and water movement. Indeed, the osmocontractile reactions of pulvini induced either by a mechanical shock in M. pudica or by dark and light signals in Cassia fasciculata were increased, indicating that, compared to Ile, these compounds may modify in a specific way the plasma membrane permeability to water and ions.
Collapse
Affiliation(s)
- Gabriel Roblin
- Laboratoire EBI (Écologie et Biologie des Interactions), UMR CNRS 7267, Équipe SEVE (Sucres, Échanges Végétaux, Environnement), Université de Poitiers, 3 rue Jacques Fort, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Joëlle Laduranty
- IC2MP (Institut de Chimie des Milieux et des Matériaux de Poitiers), UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Janine Bonmort
- Laboratoire EBI (Écologie et Biologie des Interactions), UMR CNRS 7267, Équipe SEVE (Sucres, Échanges Végétaux, Environnement), Université de Poitiers, 3 rue Jacques Fort, TSA 51106, F-86073 Poitiers Cedex 9, France
| | - Mohand Aidene
- Département de Chimie, Université de Tizi-Ouzou, BP 17, RP 15000 Tizi-Ouzou, Algeria
| | - Jean-François Chollet
- IC2MP (Institut de Chimie des Milieux et des Matériaux de Poitiers), UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, F-86073 Poitiers Cedex 9, France.
| |
Collapse
|
5
|
Liutkus M, Fraser SA, Caron K, Stigers DJ, Easton CJ. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release. Chembiochem 2016; 17:908-12. [PMID: 26918308 DOI: 10.1002/cbic.201600091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis.
Collapse
Affiliation(s)
- Mantas Liutkus
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Samuel A Fraser
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Karine Caron
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Dannon J Stigers
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
6
|
Stigers DJ, Watts ZI, Hennessy JE, Kim HK, Martini R, Taylor MC, Ozawa K, Keillor JW, Dixon NE, Easton CJ. Incorporation of chlorinated analogues of aliphatic amino acids during cell-free protein synthesis. Chem Commun (Camb) 2011; 47:1839-41. [DOI: 10.1039/c0cc02879g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. ACTA ACUST UNITED AC 2010; 6:65-80. [DOI: 10.1039/b909200p] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Kitevski-LeBlanc JL, Evanics F, Prosser RS. Approaches for the measurement of solvent exposure in proteins by 19F NMR. JOURNAL OF BIOMOLECULAR NMR 2009; 45:255-264. [PMID: 19655092 DOI: 10.1007/s10858-009-9359-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
Fluorine NMR is a useful tool to probe protein folding, conformation and local topology owing to the sensitivity of the chemical shift to the local electrostatic environment. As an example we make use of (19)F NMR and 3-fluorotyrosine to evaluate the conformation and topology of the tyrosine residues (Tyr-99 and Tyr-138) within the EF-hand motif of the C-terminal domain of calmodulin (CaM) in both the calcium-loaded and calcium-free states. We critically compare approaches to assess topology and solvent exposure via solvent isotope shifts, (19)F spin-lattice relaxation rates, (1)H-(19)F nuclear Overhauser effects, and paramagnetic shifts and relaxation rates from dissolved oxygen. Both the solvent isotope shifts and paramagnetic shifts from dissolved oxygen sensitively reflect solvent exposed surface areas.
Collapse
Affiliation(s)
- Julianne L Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd, North Mississauga, ON, L5L 1C6, Canada
| | | | | |
Collapse
|
9
|
|
10
|
Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. PROTEIN ENGINEERING 2009. [DOI: 10.1007/978-3-540-70941-1_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Montclare JK, Son S, Clark GA, Kumar K, Tirrell DA. Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. Chembiochem 2009; 10:84-6. [PMID: 19090517 PMCID: PMC3212351 DOI: 10.1002/cbic.200800164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Kim Montclare
- Department of Chemical and Biological Sciences, Polytechnic University, Brooklyn, NY 11201, USA, Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Soojin Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1) 626-793-8472
| | - Ginevra A. Clark
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
- Cancer Center, Tufts-New England Medical Center, Boston, MA 02110, USA
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA, Fax: (+1) 626-793-8472
| |
Collapse
|
12
|
Selander N, Kipke A, Sebelius S, Szabó KJ. Petasis Borono-Mannich Reaction and Allylation of Carbonyl Compounds via Transient Allyl Boronates Generated by Palladium-Catalyzed Substitution of Allyl Alcohols. An Efficient One-Pot Route to Stereodefined α-Amino Acids and Homoallyl Alcohols. J Am Chem Soc 2007; 129:13723-31. [DOI: 10.1021/ja074917a] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicklas Selander
- Contribution from the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andreas Kipke
- Contribution from the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sara Sebelius
- Contribution from the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Kálmán J. Szabó
- Contribution from the Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
13
|
|