1
|
Altrichter Y, Bou-Dib P, Kuznia C, Seitz O. Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate. J Pept Sci 2023:e3477. [PMID: 36606596 DOI: 10.1002/psc.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Peter Bou-Dib
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Christina Kuznia
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Chang LH, Seitz O. RNA-templated chemical synthesis of proapoptotic L- and d-peptides. Bioorg Med Chem 2022; 66:116786. [PMID: 35594647 DOI: 10.1016/j.bmc.2022.116786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acid-programmed reactions find application in drug screening and nucleic acid diagnosis, and offer prospects for a RNA-sensitive prodrug approach. We aim for the development of a nucleic acid-templated reaction providing nucleic acid-linked molecules that can act on intracellular protein targets. Such reactions would be useful for in situ drug synthesis and activity-based DNA-encoded library screening. In this report, we show native chemical ligation-like chemical peptidyl transfer reactions between peptide-PNA conjugates. The reaction proceeds on RNA templates. As a chemical alternative to ribosomal peptide synthesis access to both L- and d-peptides is provided. In reactions affording 9 to 14 amino acid long pro-apoptotic L- and d-peptides, we found that certain PNA sequence motifs and combinations of cell penetrating peptides (CPPs) cause surprisingly high reactivity in absence of a template. Viability measurements demonstrate that the products of templated peptidyl transfer act on HeLa cells and HEK293 cells. Of note, the presence of cysteine, which is required for NCL chemistry, can enhance the bioactivity. The study provides guidelines for the application of peptide-PNA conjugates in templated synthesis and is of interest for in situ drug synthesis and activity-based DNA-encoded library screening.
Collapse
Affiliation(s)
- Li-Hao Chang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
3
|
Houska R, Stutz MB, Seitz O. Expanding the scope of native chemical ligation - templated small molecule drug synthesis via benzanilide formation. Chem Sci 2021; 12:13450-13457. [PMID: 34777764 PMCID: PMC8528049 DOI: 10.1039/d1sc00513h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL). The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.![]()
Collapse
Affiliation(s)
- Richard Houska
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marvin Björn Stutz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
4
|
Altrichter Y, Schöller J, Seitz O. Toward conditional control of Smac mimetic activity by RNA-templated reduction of azidopeptides on PNA or 2'-OMe-RNA. Biopolymers 2021; 112:e23466. [PMID: 34287823 DOI: 10.1002/bip.23466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Oligonucleotide templated reactions can be used to control the activity of functional molecules based on the presence of a specific trigger sequence. We report an RNA-controlled reaction system to conditionally restore the N-terminal amino group and thus binding affinity of azide-modified Smac mimetic compounds (SMCs) for their target protein X-linked Inhibitor of Apoptosis Protein (XIAP). Two templated reactions were compared: Staudinger reduction with phosphines and a photocatalytic reaction with Ru(bpy)2 (mcbpy). The latter proved faster and more efficient, especially for the activation of a bivalent SMC, which requires two consecutive reduction steps. The templated reaction proceeds with turnover when 2'-OMe-RNA probes are used, but is significantly more efficient with PNA, catalyzing a reaction in the presence of low, substoichiometric amounts (1%-3%, 10 nM) of target RNA.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Justus Schöller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Watson EE, Angerani S, Sabale PM, Winssinger N. Biosupramolecular Systems: Integrating Cues into Responses. J Am Chem Soc 2021; 143:4467-4482. [DOI: 10.1021/jacs.0c12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emma E. Watson
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Simona Angerani
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Pramod M. Sabale
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chem Biol, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
6
|
Zavoiura O, Resch-Genger U, Seitz O. Reactive Quantum Dot-Based FRET Systems for Target-Catalyzed Detection of RNA. Methods Mol Biol 2021; 2105:187-198. [PMID: 32088871 DOI: 10.1007/978-1-0716-0243-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide-templated reactions (OTRs) between two reactive hybridization probes allow for the detection of a DNA or RNA of interest by exploiting the target molecule as a catalyst of chemical reactions. The product of such a reaction commonly exhibits distinct fluorescence properties and can be detected by the means of fluorescence spectroscopy. The vast majority of OTR systems utilize organic dyes as fluorescent reporters. However, the use of brighter emitters, such as semiconductor quantum dots (QDs), has potential to improve the sensitivity of detection by providing brighter signals and permitting the use of probes at very low concentrations. Here we report an RNA-templated reaction between two fluorescently labeled peptide nucleic acid (PNA)-based probes, which proceeds on the surface of a QD. The QD-bound PNA probe bears a cysteine functionality, while the other PNA is functionalized with an organic dye as a thioester. OTR between these probes proceeds through a transfer of the organic dye to the QD and can be conveniently monitored via fluorescence resonance energy transfer (FRET) from the QD to the Cy5. The reaction was performed in a conventional fluorescence microplate reader and permits the detection of RNA in the picomolar range.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.,Department of Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Patil NA. Conjugation Approaches for Peptide-Mediated Delivery of Oligonucleotides Therapeutics. Aust J Chem 2021. [DOI: 10.1071/ch21131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Janett E, Diep KL, Fromm KM, Bochet CG. A Simple Reaction for DNA Sensing and Chemical Delivery. ACS Sens 2020; 5:2338-2343. [PMID: 32804492 DOI: 10.1021/acssensors.0c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions templated by nucleic acids are currently at the heart of applications in biosensing and drug release. The number of chemical reactions selectively occurring only in the presence of the template, in aqueous solutions, and at room temperature and able to release a chemical moiety is still very limited. Here, we report the use of the p-nitrophenyl carbonate (NPC) as a new reactive moiety for DNA templated reactions releasing a colored reporter by reaction with a simple amine. The easily synthesized p-nitrophenyl carbonate was integrated in an oligonucleotide and showed a very good stability as well as a high reactivity toward amines, without the need for any supplementary reagent, quantitatively releasing the red p-nitrophenolate with a half-life of about 1 h.
Collapse
Affiliation(s)
- Elia Janett
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Kim KT, Winssinger N. Enhanced SNP-sensing using DNA-templated reactions through confined hybridization of minimal substrates (CHOMS). Chem Sci 2020; 11:4150-4157. [PMID: 34122878 PMCID: PMC8152519 DOI: 10.1039/d0sc00741b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
DNA or RNA templated reactions are attractive for nucleic acid sensing and imaging. As for any hybridization-based sensing, there is a tradeoff between sensitivity (detection threshold) and resolution (single nucleotide discrimination). Longer probes afford better sensitivity but compromise single nucleotide resolution due to the small thermodynamic penalty of a single mismatch. Herein we report a design that overcomes this tradeoff. The reaction is leveraged on the hybridization of a minimal substrate (covering 4 nucleotides) which is confined by two guide DNAs functionalized respectively with a ruthenium photocatalyst. The use of a catalytic reaction is essential to bypass the exchange of guide DNAs while achieving signal amplification through substrate turnover. The guide DNAs restrain the reaction to a unique site and enhance the hybridization of short substrates by providing two π-stacking interactions. The reaction was shown to enable the detection of SNPs and SNVs down to 50 pM with a discrimination factor ranging from 24 to 309 (median 82, 27 examples from 3 oncogenes). The clinical diagnostic potential of the technology was demonstrated with the analysis of RAS amplicons obtained directly from cell culture.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
10
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Lores Lareo P, Linscheid MW, Seitz O. Nucleic acid and SNP detection via template-directed native chemical ligation and inductively coupled plasma mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:676-683. [PMID: 31240800 DOI: 10.1002/jms.4382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Detection of nucleic acids and single nucleotide polymorphisms (SNPs) is of pivotal importance in biology and medicine. Given that the biological effect of SNPs often is enhanced in combination with other SNPs, multiplexed SNP detection is desirable. We show proof of concept of the multiplexed detection of SNPs based on the template-directed native chemical ligation (NCL) of PNA-probes carrying a metal tag allowing detection using ICP-MS. For the detection of ssDNA oligonucleotides (30 bases), two probes, one carrying the metal tag and a second one carrying biotin for purification, are covalently ligated. The methodological limit of detection is of 29 pM with RSD of 6.7% at 50 pM (n = 5). Detection of SNPs is performed with the combination of two sets of reporter probes. The first probe set targets the SNP, and its yield is compared with a second set of probes targeting a neighboring sequence. The assay was used to simultaneously differentiate between alleles of three SNPs at 5-nM concentration.
Collapse
Affiliation(s)
- Pablo Lores Lareo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
13
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
14
|
Anzola M, Winssinger N. Turn On of a Ruthenium(II) Photocatalyst by DNA-Templated Ligation. Chemistry 2018; 25:334-342. [PMID: 30451338 DOI: 10.1002/chem.201804283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 01/05/2023]
Abstract
Here, the synthesis of a RuII photocatalyst by light-directed oligonucleotide-templated ligation reaction is described. The photocatalyst was found to have tremendous potential for signal amplification with >15000 turnovers measured in 9 hours. A templated reaction was used to turn on the activity of this ruthenium(II) photocatalyst in response to a specific DNA sequence. The photocatalysis of the ruthenium(II) complex was harnessed to uncage a new precipitating dye that is highly fluorescent and photostable in the solid state. This reaction was used to discriminate between different DNA analytes based on localization of the precipitate as well as for in cellulo miRNA detection. Finally, a bipyridine ligand functionalized with two different peptide nucleic acid (PNA) sequences was shown to enable template-mediated ligation (turn on of the ruthenium(II) photocatalysis) and recruitment of substrate for templated photocatalysis.
Collapse
Affiliation(s)
- Marcello Anzola
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
15
|
Osman EA, Gadzikwa T, Gibbs JM. Quick Click: The DNA-Templated Ligation of 3'-O-Propargyl- and 5'-Azide-Modified Strands Is as Rapid as and More Selective than Ligase. Chembiochem 2018; 19:2081-2087. [PMID: 30059599 DOI: 10.1002/cbic.201800305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/24/2022]
Abstract
The copper(I)-mediated azide-alkyne cycloaddition (CuAAC) of 3'-propargyl ether and 5'-azide oligonucleotides is a particularly promising ligation system because it results in triazole linkages that effectively mimic the phosphate-sugar backbone of DNA, leading to unprecedented tolerance of the ligated strands by polymerases. However, for a chemical ligation strategy to be a viable alternative to enzymatic systems, it must be equally as rapid, as discriminating, and as easy to use. We found that the DNA-templated reaction with these modifications was rapid under aerobic conditions, with nearly quantitative conversion in 5 min, resulting in a kobs value of 1.1 min-1 , comparable with that measured in an enzymatic ligation system by using the highest commercially available concentration of T4 DNA ligase. Moreover, the CuAAC reaction also exhibited greater selectivity in discriminating C:A or C:T mismatches from the C:G match than that of T4 DNA ligase at 29 °C; a temperature slightly below the perfect nicked duplex dissociation temperature, but above that of the mismatched duplexes. These results suggest that the CuAAC reaction of 3'-propargyl ether and 5'-azide-terminated oligonucleotides represents a complementary alternative to T4 DNA ligase, with similar reaction rates, ease of setup and even enhanced selectivity for certain mismatches.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
16
|
Sayers J, Payne RJ, Winssinger N. Peptide nucleic acid-templated selenocystine-selenoester ligation enables rapid miRNA detection. Chem Sci 2017; 9:896-903. [PMID: 29629156 PMCID: PMC5873163 DOI: 10.1039/c7sc02736b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
The development of a rapid and chemoselective selenocystine-selenoester peptide ligation that operates at nanomolar reactant concentrations has been developed by utilising PNA templation. Kinetic analysis of the templated peptide ligation revealed that the selenocystine-selenoester reaction was 10 times faster than traditional native chemical ligation at cysteine and to our knowledge is the fastest templated ligation reaction reported to date. The efficiency and operational simplicity of this technology is highlighted through the formation of hairpin molecular architectures and in a novel paper-based lateral flow assay for the rapid and sequence specific detection of oligonucleotides, including miRNA in cell lysates.
Collapse
Affiliation(s)
- Jessica Sayers
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia . .,Department of Organic Chemistry , Faculty of Science , NCCR Chemical Biology , University of Geneva , Quai Ernest Ansermet 30 , 1211 Geneva , Switzerland .
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia .
| | - Nicolas Winssinger
- Department of Organic Chemistry , Faculty of Science , NCCR Chemical Biology , University of Geneva , Quai Ernest Ansermet 30 , 1211 Geneva , Switzerland .
| |
Collapse
|
17
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
18
|
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 2017; 38:798-805. [PMID: 28414202 DOI: 10.1038/aps.2017.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.
Collapse
|
19
|
Abstract
The present review offers an overview of nonclassical (e.g., with no pre- or in situ activation of a carboxylic acid partner) approaches for the construction of amide bonds. The review aims to comprehensively discuss relevant work, which was mainly done in the field in the last 20 years. Organization of the data follows a subdivision according to substrate classes: catalytic direct formation of amides from carboxylic and amines ( section 2 ); the use of carboxylic acid surrogates ( section 3 ); and the use of amine surrogates ( section 4 ). The ligation strategies (NCL, Staudinger, KAHA, KATs, etc.) that could involve both carboxylic acid and amine surrogates are treated separately in section 5 .
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Simon Suppo
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt de Montpellier (ICGM), UMR 5253-CNRS-UM-ENSCM, Ecole Nationale Supérieure de Chimie , 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| |
Collapse
|
20
|
Manicardi A, Corradini R. Effect of chirality in gamma-PNA: PNA interaction, another piece in the picture. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1131801. [PMID: 26744081 PMCID: PMC5329894 DOI: 10.1080/1949095x.2015.1131801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022]
Abstract
Modification of the PNA backbone can be used to broaden their utility by introducing new functional groups. In particular, gamma-modified PNA have been found to be quite effective in a number of applications, and exhibit particularly high DNA binding affinity. The introduction of one side chain imply that the achiral backbone of PNA becomes chiral, and binding properties depend on the stereochemistry. A new paper on gamma-modified PNA by Ly and co-workers complete the existing knowledge by displaying that in binding to complementary PNA stereochemical orthogonality can be demonstrated. This opens the way to the exploitation of stereochemical features in diagnostic assays and in nanofabrication.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica; University of Parma; Parma, Italy
| | | |
Collapse
|
21
|
Singhal A, Bagnacani V, Corradini R, Nielsen PE. Toward peptide nucleic acid (PNA) directed peptide translation using ester based aminoacyl transfer. ACS Chem Biol 2014; 9:2612-20. [PMID: 25192412 DOI: 10.1021/cb5005349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide synthesis is a fundamental feature of life. However, it still remains unclear how the contemporary translation apparatus evolved from primitive prebiotic systems and at which stage of the evolution peptide synthesis emerged. Using simple molecular architectures, in which aminoacyl transfer of phenylalanine occurs either between two ends of a PNA stem loop structure, between two PNAs in a duplex, or between two PNAs assembled on a PNA template, we show that bona fide template instructed phenylalanine transfer can take place. Thus, we have identified conditions which allow template assisted intermolecular aminoacyl transfer using simple ester aminolysis chemistry primitively analogous to the ribosomal peptidyl transferase reaction in the absence of anchimeric assistance from ribose and ribosome catalysis. These results help define the minimum chemical boundary conditions for the translation process and also give insight into the possibilities for the prebiotic emergence of RNA-independent translation.
Collapse
Affiliation(s)
| | - Valentina Bagnacani
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | | |
Collapse
|
22
|
Roloff A, Ficht S, Dose C, Seitz O. DNA-templated native chemical ligation of functionalized peptide nucleic acids: a versatile tool for single base-specific detection of nucleic acids. Methods Mol Biol 2014; 1050:131-41. [PMID: 24297356 DOI: 10.1007/978-1-62703-553-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Single base-specific detection of DNA/RNA sequences is of importance in the diagnosis of disease-associated genetic disorders or early stage cancer. This chapter introduces DNA-templated native chemical PNA ligation as a potentially useful tool for the sequence specific detection of nucleic acids. The template-induced alignment of PNA-thioesters and 1,2-aminothiol-PNAs in close proximity leads to an increase in their effective molarities. This facilitates PNA ligation to proceed at concentrations where no reaction would be possible in absence of the template. Moreover, hybridization of the rather short PNA conjugates with non-complementary DNA/RNA is disfavored, which prevents PNA ligation to occur on single base-mismatched templates. Different readout strategies of the ligation reaction such as HPLC, MALDI-TOF-MS and fluorecence monitoring are discussed, and examples for the detection of a point mutation within single stranded and PCR-amplified double stranded DNA are provided.
Collapse
Affiliation(s)
- Alexander Roloff
- Department of Organic and Bioorganic Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA mit 3′-5′-Disulfid-Verknüpfung - schnelle chemische Ligation durch isosteren Ersatz. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA with 3'-5'-disulfide links--rapid chemical ligation through isosteric replacement. Angew Chem Int Ed Engl 2014; 53:4222-6. [PMID: 24623660 DOI: 10.1002/anie.201310644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA.1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid-phase synthesis of oligonucleotides containing 5'- or 3'-mercapto-dideoxynucleotides and their chemical ligations, yielding 3'-5'-disulfide bonds as a replacement for 3'-5'-phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half-lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3'-5' orientation of the activation site. The influence of temperature on the templated reaction is shown.
Collapse
Affiliation(s)
- Volker Patzke
- Lehrstuhl für Bioorganische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany).
| | | | | |
Collapse
|
25
|
Vázquez O, Seitz O. Templated native chemical ligation: peptide chemistry beyond protein synthesis. J Pept Sci 2014; 20:78-86. [PMID: 24395765 DOI: 10.1002/psc.2602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/11/2022]
Abstract
Native chemical ligation (NCL) is a powerful method for the convergent synthesis of proteins and peptides. In its original format, NCL between a peptide containing a C-terminal thioester and another peptide offering an N-terminal cysteine has been used to enable protein synthesis of unprotected peptide fragments. However, the applications of NCL extend beyond the scope of protein synthesis. For instance, NCL can be put under the control of template molecules. In such a scenario, NCL enables the design of conditional reaction systems in which, peptide bond formation occurs only when a specific third party molecule is present. In this review, we will show how templates can be used to control the reactivity and chemoselectivity of NCL reactions. We highlight peptide and nucleic-acid-templated NCL reactions and discuss potential applications in nucleic acid diagnosis, origin-of-life studies and gene-expression-specific therapies.
Collapse
Affiliation(s)
- Olalla Vázquez
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489, Berlin, Germany
| |
Collapse
|
26
|
Vázquez O, Seitz O. Cytotoxic peptide–PNA conjugates obtained by RNA-programmed peptidyl transfer with turnover. Chem Sci 2014. [DOI: 10.1039/c4sc00299g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A RNA triggered chemical peptidyl transfer reaction leads to a cytotoxic peptide conjugate that requires turnover in RNA for bioactivity.
Collapse
Affiliation(s)
- O. Vázquez
- Institut für Chemie
- Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - O. Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
27
|
Michaelis J, Roloff A, Seitz O. Amplification by nucleic acid-templated reactions. Org Biomol Chem 2014; 12:2821-33. [DOI: 10.1039/c4ob00096j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleic acid-templated reactions that proceed with turnover provide a means for signal amplification, which facilitates the use and detection of biologically occurring DNA/RNA molecules.
Collapse
Affiliation(s)
- Julia Michaelis
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
28
|
Roloff A, Seitz O. Reducing product inhibition in nucleic acid-templated ligation reactions: DNA-templated cycligation. Chembiochem 2013; 14:2322-8. [PMID: 24243697 DOI: 10.1002/cbic.201300516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/19/2023]
Abstract
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence ("cycligation") of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489-Berlin (Germany)
| | | |
Collapse
|
29
|
Gorska K, Winssinger N. Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. Angew Chem Int Ed Engl 2013; 52:6820-43. [PMID: 23794204 DOI: 10.1002/anie.201208460] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Indexed: 12/30/2022]
Abstract
The programmability of oligonucleotide recognition offers an attractive platform to direct the assembly of reactive partners that can engage in chemical reactions. Recently, significant progress has been made in both the breadth of chemical transformations and in the functional output of the reaction. Herein we summarize these recent progresses and illustrate their applications to translate oligonucleotide instructions into functional materials and novel architectures (conductive polymers, nanopatterns, novel oligonucleotide junctions); into fluorescent or bioactive molecule using cellular RNA; to interrogate secondary structures or oligonucelic acids; or a synthetic oligomer.
Collapse
Affiliation(s)
- Katarzyna Gorska
- Institut de Science et Ingénierie Supramoléculaires (ISIS-UMR 7006), Universite de Strasbourg-CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | |
Collapse
|
30
|
Gorska K, Winssinger N. Reaktionen an Nucleinsäuretemplaten: mehr Methoden zur Übersetzung Oligonucleotid-basierter Informationen in neue Funktionen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Roloff A, Seitz O. The role of reactivity in DNA templated native chemical PNA ligation during PCR. Bioorg Med Chem 2013; 21:3458-64. [PMID: 23702395 DOI: 10.1016/j.bmc.2013.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
DNA templated fluorogenic reactions have been used as a diagnostic tool for the sequence specific detection of nucleic acids; and it has been shown that the native chemical ligation between thioester- and 1,2-aminothiol-modified PNA probes is amongst the most selective DNA detection methods reported. We explored whether a DNA templated reaction can be interfaced with the polymerase chain reaction (PCR). This endeavor posed a significant challenge. The reactive groups involved must be sufficiently stable to tolerate the high temperature applied in the PCR process. Nevertheless, the ligation reaction must proceed very rapidly and sequence specifically within the short time available in the annealing and primer extension steps before denaturation is used after approx. 1 min to commence the next PCR cycle. This required a careful optimization of the ternary complex architecture as well as adjustments of probe length and probe reactivities. Our results point to the prime importance of the ligation architecture. We show that once suitable annealing sites have been identified less reactive probe sets may be preferable if sequence specificity is of major concern. The reactivity tuning enabled the development of an in-PCR ligation, which was used for the single nucleotide specific typing of the V600E (T1799A) point mutation in the human BRaf gene. Showcasing the efficiency and sequence specificity of native chemical PNA ligation, attomolar template proofed sufficient to trigger signal while a 1000-fold higher load of single mismatched template failed to induce appreciable signal.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|
32
|
Chemical methods for peptide and protein production. Molecules 2013; 18:4373-88. [PMID: 23584057 PMCID: PMC6270108 DOI: 10.3390/molecules18044373] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.
Collapse
|
33
|
Roloff A, Seitz O. Bioorthogonal reactions challenged: DNA templated native chemical ligation during PCR. Chem Sci 2013. [DOI: 10.1039/c2sc20961f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Sugiyama T, Kittaka A. Chiral peptide nucleic acids with a substituent in the N-(2-aminoethy)glycine backbone. Molecules 2012; 18:287-310. [PMID: 23271467 PMCID: PMC6269907 DOI: 10.3390/molecules18010287] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022] Open
Abstract
A peptide nucleic acid (PNA) is a synthetic nucleic acid mimic in which the sugar-phosphate backbone is replaced by a peptide backbone. PNAs hybridize to complementary DNA and RNA with higher affinity and superior sequence selectivity compared to DNA. PNAs are resistant to nucleases and proteases and have a low affinity for proteins. These properties make PNAs an attractive agent for biological and medical applications. To improve the antisense and antigene properties of PNAs, many backbone modifications of PNAs have been explored under the concept of preorganization. This review focuses on chiral PNAs bearing a substituent in the N-(2-aminoethyl)glycine backbone. Syntheses, properties, and applications of chiral PNAs are described.
Collapse
Affiliation(s)
- Toru Sugiyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-3-5465-8743
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan; E-Mail:
| |
Collapse
|
35
|
Michaelis J, Maruyama A, Seitz O. Promoting strand exchange in a DNA-templated transfer reaction. Chem Commun (Camb) 2012; 49:618-20. [PMID: 23223153 DOI: 10.1039/c2cc36162k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Most DNA-templated reactions suffer from product inhibition. We explored a DNA-triggered fluorophor transfer reaction and demonstrated that comb-type polylysine-polydextran copolymers increase the turnover in template by promoting strand exchange.
Collapse
Affiliation(s)
- Julia Michaelis
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
36
|
Bol'shakov O, Kovacs J, Chahar M, Ha K, Khelashvili L, Katritzky AR. S- toN-Acyl transfer inS-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states. J Pept Sci 2012; 18:704-9. [DOI: 10.1002/psc.2438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Oleg Bol'shakov
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Judit Kovacs
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Mamta Chahar
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Khanh Ha
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Levan Khelashvili
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | | |
Collapse
|
37
|
Kummer S, Knoll A, Socher E, Bethge L, Herrmann A, Seitz O. PNA FIT-probes for the dual color imaging of two viral mRNA targets in influenza H1N1 infected live cells. Bioconjug Chem 2012; 23:2051-60. [PMID: 22946435 DOI: 10.1021/bc300249f] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorogenic hybridization probes that allow RNA imaging provide information as to how the synthesis and transport of particular RNA molecules is orchestrated in living cells. In this study, we explored the peptide nucleic acid (PNA)-based FIT-probes in the simultaneous imaging of two different viral mRNA molecules expressed during the replication cycle of the H1N1 influenza A virus. PNA FIT-probes are non-nucleotidic, nonstructured probes and contain a single asymmetric cyanine dye which serves as a fluorescent base surrogate. The fluorochrome acts as a local intercalator probe and reports hybridization of target DNA/RNA by enhancement of fluorescence. Though multiplexed hybridization probes are expected to facilitate the analysis of RNA expression, there are no previous reports on the dual color imaging of two different viral mRNA targets. In this work, we developed a set of two differently colored PNA FIT-probes that allow the spectrally resolved imaging of mRNA coding for neuraminidase (NA) and matrix protein 1 (M1); proteins which execute distinct functions during the replication of the influenza A virus. The probes are characterized by a wide range of applicable hybridization temperatures. The same probe sequence enabled live-cell RNA imaging (at 37 °C) as well as real-time PCR measurements (at 60 °C annealing temperature). This facilitated a comprehensive analysis of RNA expression by quantitative (qPCR) and qualitative (imaging) means. Confocal laser scanning microscopy showed that the viral-RNA specific PNA FIT-probes neither stained noninfected cells nor cells infected by a control virus. The joint use of differently colored PNA FIT-probes in this feasibility study revealed significant differences in the expression pattern of influenza H1N1 mRNAs coding for NA or M1. These experiments provide evidence for the usefulness of PNA FIT-probes in investigations on the temporal and spatial progression of mRNA synthesis in living cells for two mRNA species.
Collapse
Affiliation(s)
- Susann Kummer
- Department of Biology, Humboldt University Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Vogel H, Richert C. Labeling Small RNAs through Chemical Ligation at the 5′ Terminus: Enzyme-Free or Combined with Enzymatic 3′-Labeling. Chembiochem 2012; 13:1474-82. [DOI: 10.1002/cbic.201200214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Indexed: 01/01/2023]
|
39
|
Bai Y, Xue H, Ling Y, Cheng M, Cai L, Liu K. Inter-chain acyl transfer reaction in a peptide six-helical bundle: a chemical method for regulating the interaction between peptides or proteins. Chem Commun (Camb) 2012; 48:4320-2. [PMID: 22451895 DOI: 10.1039/c2cc17428f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An inter-helical acyl transfer specifically occurred between the C-and N-peptides of HIV gp41 after assembly of the six-helical bundle (6HB), forming an inter-helical covalent bond that greatly enhanced 6HB stability. In the reaction, the C-peptide was modified as an acyl donor, and the N-peptide served as an acyl acceptor.
Collapse
Affiliation(s)
- Yu Bai
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | | | | | | | | | | |
Collapse
|
40
|
Chen XH, Roloff A, Seitz O. Consecutive Signal Amplification for DNA Detection Based on De Novo Fluorophore Synthesis and Host-Guest Chemistry. Angew Chem Int Ed Engl 2012; 51:4479-83. [DOI: 10.1002/anie.201108845] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 01/27/2023]
|
41
|
Chen XH, Roloff A, Seitz O. Konsekutive Signalverstärkung für die DNA-Detektion basierend auf einer De-novo-Fluorophorsynthese und Wirt-Gast-Chemie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Oligonucleotide-templated reactions for sensing nucleic acids. Molecules 2012; 17:2446-63. [PMID: 22374329 PMCID: PMC6268776 DOI: 10.3390/molecules17032446] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide-templated reactions are useful for applying nucleic acid sensing. Various chemistries for oligonucleotide-templated reaction have been reported so far. Major scientific interests are focused on the development of signal amplification systems and signal generation systems. We introduce the recent advances of oligonucleotide-templated reaction in consideration of the above two points.
Collapse
|
43
|
Ito KR, Kodama T, Makimura F, Hosoki N, Osaki T, Orita A, Imanishi T, Obika S. Cleavage of oligonucleotides containing a P3'→N5' phosphoramidate linkage mediated by single-stranded oligonucleotide templates. Molecules 2011; 16:10695-708. [PMID: 22186956 PMCID: PMC6264227 DOI: 10.3390/molecules161210695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022] Open
Abstract
Double-stranded DNA (dsDNA) templates can hybridize to and accelerate cleavage of oligonucleotides containing a P3'→N5' phosphoramidate (P-N) linkage. This dsDNA-templated cleavage of P-N linkages could be due to conformational strain placed on the linkage upon triplex formation. To determine whether duplex formation also induced conformational strain, we examined the reactivity of the oligonucleotides with a P-N linkage in the presence of single-stranded templates, and compared these reactions to those with dsDNA templates. P-N oligonucleotides that are cleaved upon duplex formation could be used as probes to detect single-stranded nucleic acids.
Collapse
Affiliation(s)
- Kosuke Ramon Ito
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Futaba Makimura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noritsugu Hosoki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomohisa Osaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Orita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- BNA Inc., 7-7-20 Saito-asagi, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Imanishi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- BNA Inc., 7-7-20 Saito-asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Author to whom correspondence should be addressed; ; Tel.: +81-6-6879-8200; Fax: +81-6-6879-8204
| |
Collapse
|
44
|
Kausar A, McKay RD, Lam J, Bhogal RS, Tang AY, Gibbs-Davis JM. Tuning DNA Stability To Achieve Turnover in Template for an Enzymatic Ligation Reaction. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Kausar A, McKay RD, Lam J, Bhogal RS, Tang AY, Gibbs-Davis JM. Tuning DNA stability to achieve turnover in template for an enzymatic ligation reaction. Angew Chem Int Ed Engl 2011; 50:8922-6. [PMID: 21905182 DOI: 10.1002/anie.201102579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Abu Kausar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Erben A, Grossmann TN, Seitz O. DNA-instructed acyl transfer reactions for the synthesis of bioactive peptides. Bioorg Med Chem Lett 2011; 21:4993-7. [PMID: 21664815 DOI: 10.1016/j.bmcl.2011.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 01/31/2023]
Abstract
We present a method which allows for the translation of nucleic acid information into the output of molecules that interfere with disease-related protein-protein interactions. The method draws upon a nucleic acid-templated reaction, in which adjacent binding of reactive conjugates triggers the transfer of an aminoacyl or peptidyl group from a donating thioester-linked PNA-peptide hybrid to a peptide-PNA acceptor. We evaluated the influence of conjugate structures on reactivity and sequence specificity. The DNA-triggered peptide synthesis proceeded sequence specifically and showed catalytic turnover in template. The affinity of the formed peptide conjugates for the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) is discussed.
Collapse
Affiliation(s)
- Anne Erben
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | | | | |
Collapse
|
47
|
Wang C, Guo Q, Fu Y. Theoretical Analysis of the Detailed Mechanism of Native Chemical Ligation Reactions. Chem Asian J 2011; 6:1241-51. [DOI: 10.1002/asia.201000760] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| | - Qing‐Xiang Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China), Fax: (+86) 551‐3606689
| |
Collapse
|
48
|
Erben A, Grossmann TN, Seitz O. DNA-triggered synthesis and bioactivity of proapoptotic peptides. Angew Chem Int Ed Engl 2011; 50:2828-32. [PMID: 21387498 DOI: 10.1002/anie.201007103] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Erben
- Institut für Chemie der Humboldt Universität zu Berlin, Germany
| | | | | |
Collapse
|
49
|
Erben A, Grossmann TN, Seitz O. DNA‐gesteuerte Synthese und Bioaktivität proapoptotischer Peptide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anne Erben
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| | - Tom N. Grossmann
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| | - Oliver Seitz
- Institut für Chemie der Humboldt Universität zu Berlin, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland), Fax: (+49) 30‐2093‐7266
| |
Collapse
|
50
|
Peng X, Li H, Seidman M. A Template-Mediated Click-Click Reaction: PNA-DNA, PNA-PNA (or Peptide) Ligation, and Single Nucleotide Discrimination. European J Org Chem 2010; 2010:4194-4197. [PMID: 23504541 PMCID: PMC3597112 DOI: 10.1002/ejoc.201000615] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Indexed: 01/29/2023]
Abstract
A highly efficient chemical ligation was developed for quantitative conjugation of PNA with DNA (PNA or peptide) using the copper-catalyzed azide-alkyne cycloaddition reaction. While PNAs with an alkyne at the C-terminus and an azide at the N-terminus have been used, an efficient click-click reaction occurs. The PNA click ligation is sequence-specific and capable of single nucleotide discrimination.
Collapse
Affiliation(s)
- Xiaohua Peng
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, 53211, U.S.A
| | - Hong Li
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224
| | - Michael Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224
| |
Collapse
|