1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Roy R, Jonniya NA, Kar P. Effect of Sulfation on the Conformational Dynamics of Dermatan Sulfate Glycosaminoglycan: A Gaussian Accelerated Molecular Dynamics Study. J Phys Chem B 2022; 126:3852-3866. [PMID: 35594147 DOI: 10.1021/acs.jpcb.2c01807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycosaminoglycans (GAGs) are anionic biopolymers present on cell surfaces as a part of proteoglycans. The biological activities of GAGs depend on the sulfation pattern. In our study, we have considered three octadecasaccharide dermatan sulfate (DS) chains with increasing order of sulfation (dp6s, dp7s, and dp12s) to illuminate the role of sulfation on the GAG units and its chain conformation through 10 μs-long Gaussian accelerated molecular dynamics simulations. DS is composed of repeating disaccharide units of iduronic acid (IdoA) and N-acetylgalactosamine (N-GalNAc). Here, N-GalNAc is linked to IdoA via β(1-4), while IdoA is linked to N-GalNAc through α(1-3). With the increase in sulfation, the DS structure becomes more rigid and linear, as is evident from the distribution of root-mean-square deviations (RMSDs) and end-to-end distances. The tetrasaccharide linker region of the main chain shows a rigid conformation in terms of the glycosidic linkage. We have observed that upon sulfation (i.e., dp12s), the ring flip between two chair forms vanished for IdoA. The dynamic cross-correlation analysis reveals that the anticorrelation motions in dp12s are reduced significantly compared to dp6s or dp7s. An increase in sulfation generates relatively more stable hydrogen-bond networks, including water bridging with the neighboring monosaccharides. Despite the favorable linear structures of the GAG chains, our study also predicts few significant bendings related to the different puckering states, which may play a notable role in the function of the DS. The relation between the global conformation with the micro-level parameters such as puckering and water-mediated hydrogen bonds shapes the overall conformational space of GAGs. Overall, atomistic details of the DS chain provided in this study will help understand their functional and mechanical roles, besides developing new biomaterials.
Collapse
Affiliation(s)
- Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
3
|
Rai S, Misra D, Misra A, Jain A, Verma A, Grover D, Haris A. A novel approach in diagnosing multiple dentigerous cysts using CBCT illustration indicative of Mucopolysaccharidosis VI - a case report. J Med Life 2022; 15:579-586. [PMID: 35646169 PMCID: PMC9126466 DOI: 10.25122/jml-2021-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Mucopolysaccharidosis VI is a genetic disorder affecting multiple organs with sundry clinical presentations. The main etiological factor reflects the disturbances in mucopolysaccharide metabolism leading to deposition of acid mucopolysaccharide in various tissues. The pathognomonic features of the disease include a large head, short neck, corneal opacity, open mouth associated with an enlarged tongue, enlargement of the skull, and long anteroposterior dimension with unerupted dentition, dentigerous cyst-like follicles, condylar defects, and gingival hyperplasia. An 18-year-old boy with Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is described in this article, emphasizing the oral manifestations and radiographic illustration of lesions in the jaws. It also emphasizes the essential role of cone-beam computed tomography to identify and analyze multicentric pathologies in the jaws.
Collapse
Affiliation(s)
- Shalu Rai
- Department of Oral Medicine and Radiology, Institute of Dental Studies and Technologies, Kadrabad, India,Corresponding Author: Shalu Rai, Department of Oral Medicine and Radiology, Institute of Dental Studies and Technologies, Kadrabad, India. E-mail:
| | - Deepankar Misra
- Department of Oral Medicine and Radiology, Institute of Dental Studies and Technologies, Kadrabad, India
| | - Akansha Misra
- Department of Oral Pathology, Institute of Dental Studies and Technologies, Kadrabad, India
| | - Ankit Jain
- Department of Oral Medicine and Radiology, DJ Dental College and Research Centre, Modinagar, India
| | - Ashish Verma
- Department of Periodontology, Sudha Rastogi College of Dental Sciences and Research, Faridabad, India
| | - Dimple Grover
- Department of Oral and Maxillofacial Surgery, Sudha Rastogi College of Dental Sciences and Research, Faridabad, India
| | - Ayesha Haris
- Project Officer, Institute of Liver and Biliary Sciences, Delhi, India
| |
Collapse
|
4
|
Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, Gálvez-Martín P, Marchal JA, Vázquez-Lasa B, Gallego I, Saenz-Del-Burgo L, Pedraz JL. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Macromol Biosci 2022; 22:e2100435. [PMID: 35029035 DOI: 10.1002/mabi.202100435] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Indexed: 11/11/2022]
Abstract
Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study was focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it was added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties were evaluated. Then, sterilisation effect, biocompatibility and printability on developed NC-Alg-CS and NC-Alg-DS inks were evaluated. Subsequently, printed scaffolds were characterized. Finally, NC-Alg-CS and NC-Alg-DS inks were loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability were assessed. Results showed that the addition of both CS and DS to the NC-Alg ink improved its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage was promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, 18100, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.,BioFab i3D Lab - Biofabrication and 3D (bio)printing singular Laboratory, University of Granada, Granada, 18100, Spain
| | - Blanca Vázquez-Lasa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
5
|
Zamfir AD. Capillary Zone Electrophoresis-Electrospray Ionization Tandem Mass Spectrometry for Total Analysis of Chondroitin/Dermatan Sulfate Oligosaccharides. Methods Mol Biol 2022; 2531:163-184. [PMID: 35941485 DOI: 10.1007/978-1-0716-2493-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteoglycans are heavily glycosylated proteins, covalently linked to one or more glycosaminoglycan (GAG) chains, abundantly expressed in the extracellular matrix (ECM). Among GAGs, chondroitin sulfate (CS) and dermatan sulfate (DS) play an essential role at the ECM level; however, the composition of the hybrid CS/DS as well as the distribution of the sulfate groups along the chain were also shown to influence biological activities in brain. The elevated structural diversity of CS/DS motifs, in which sulfation may occur at GalNAc and/or IdoA/GlcA in various combinations, requires the development of specific high performance analytical methods for reliable elucidation. Due to its sensitivity, reproducibility, and efficiency, capillary zone electrophoresis (CZE) for separation of CS/DS oligosaccharides coupled to electrospray ionization mass spectrometry (ESI-MS) for their structure determination contributed an essential progress to this field.In the present chapter, two powerful methods based on CZE for separation and ESI-MS for identification and structural analysis of CS/DS are presented. The first part is devoted to offline CZE-ESI-MS based on fraction collection, screening by negative ion mode nanoESI, and fragmentation analysis in tandem MS using collision-induced dissociation (CID) at low ion acceleration energies. In the second part of the chapter, a strategy for online CZE-ESI-MS in normal polarity and negative mode ESI followed by tandem MS in real-time data-dependent acquisition mode for CS/DS separation, screening, and fragmentation is described in detail. The latter method entails the in-laboratory manufacturing of a simple yet sturdy interface for the online CZE coupling to ESI-MS and the optimization of the coupled system for total analysis of regularly sulfated and irregularly, i.e., under- and oversulfated CS/DS domains.
Collapse
Affiliation(s)
- Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.
- "Aurel Vlaicu" University of Arad, Arad, Romania.
| |
Collapse
|
6
|
In-silico investigation of the conformational properties of the disaccharide units of chondroitin, dermatan and heparan sulphate in aqueous medium. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Ma ST, Lee CW, Liu WM. Synthesis of 4-thiol-furanosidic uronate via hydrothiolation reaction. RSC Adv 2021; 11:18409-18416. [PMID: 35480947 PMCID: PMC9033442 DOI: 10.1039/d1ra02110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Uronic acids are not only important building blocks of polysaccharides and oligosaccharides but also are widely used in the food and pharmaceutical industries. Inspired by the structure of natural products, here, we disclosed base-mediated and radical-mediated hydrothiolation reactions for the preparation of thiol-contained uronates. In comparison with base-mediated reaction, radical-mediated hydrothiolation is inefficient due to the electron-withdrawing group on the ethylene group; nevertheless, the adduct had excellent stereoselectivity at both C-4 and C-5 positions. For the alkaline approach, thiols as nucleophiles can regioselectively and stereoselectively attach to the C-4 position of Δ-4,5-unsaturated uronate with moderate to good yields. However, poor stereoselectivity at the C-5 position was observed due to retro thiol-Michael addition. After removing the protecting group of the thiol, the thiol adduct was isomerized to the furanosidic form and the 4-thiol-furanosidic uronate derivative was synthesized for the first time. Uronic acids are not only important building blocks of bioactive molecules but also are widely used in the food and pharmaceutical industries. Its derivative, 4-thiol-furanosidic uronate was successfully synthesized and firstly reported here.![]()
Collapse
Affiliation(s)
- Shih-Ting Ma
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City 24205
- Republic of China
| | - Chia-Wei Lee
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City 24205
- Republic of China
| | - Wei-Min Liu
- Department of Chemistry
- Fu Jen Catholic University
- New Taipei City 24205
- Republic of China
| |
Collapse
|
9
|
Cortez Miranda JL, Blacido Trujillo L, Liendo Chocano ME. Home treatment of type VI mucopolysaccharidosis (Maroteaux-Lamy syndrome) an alternative at this time of COVID-19 pandemic: A case in Peru. Clin Case Rep 2020; 8:3483-3488. [PMID: 33363956 PMCID: PMC7752495 DOI: 10.1002/ccr3.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/19/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report a patient with mucopolysaccharidosis type VI, on long-term enzyme replacement home therapy. Results support the efficacy and safety benefits, with additional advantage of home therapy to minimize the risk of community-transmitted infections.
Collapse
|
10
|
Whitmore EK, Martin D, Guvench O. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21207699. [PMID: 33080973 PMCID: PMC7589010 DOI: 10.3390/ijms21207699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of dermatan, keratan, and heparan and expanded our database of MD-generated GAG conformations. Here, we show that individual glycosidic linkages and monosaccharide rings in 10- and 20-mers of hyaluronan and nonsulfated dermatan, keratan, and heparan behave randomly and independently in MD simulation and, therefore, using a database of MD-generated 20-mer conformations, that our algorithm can construct conformational ensembles of 10- and 20-mers of various GAG types that accurately represent the backbone flexibility seen in MD simulations. Furthermore, our algorithm efficiently constructs conformational ensembles of GAG 200-mers that we would reasonably expect from MD simulations.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Devon Martin
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
11
|
Whitmore EK, Vesenka G, Sihler H, Guvench O. Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Biomolecules 2020; 10:biom10040537. [PMID: 32252422 PMCID: PMC7226628 DOI: 10.3390/biom10040537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear, structurally diverse, conformationally complex carbohydrate polymers that may contain up to 200 monosaccharides. These characteristics present a challenge for studying GAG conformational thermodynamics at atomic resolution using existing experimental methods. Molecular dynamics (MD) simulations can overcome this challenge but are only feasible for short GAG polymers. To address this problem, we developed an algorithm that applies all conformational parameters contributing to GAG backbone flexibility (i.e., bond lengths, bond angles, and dihedral angles) from unbiased all-atom explicit-solvent MD simulations of short GAG polymers to rapidly construct models of GAGs of arbitrary length. The algorithm was used to generate non-sulfated chondroitin 10- and 20-mer ensembles which were compared to MD-generated ensembles for internal validation. End-to-end distance distributions in constructed and MD-generated ensembles have minimal differences, suggesting that our algorithm produces conformational ensembles that mimic the backbone flexibility seen in simulation. Non-sulfated chondroitin 100- and 200-mer ensembles were constructed within a day, demonstrating the efficiency of the algorithm and reduction in time and computational cost compared to simulation.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Gabriel Vesenka
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Hanna Sihler
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
| | - Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (G.V.); (H.S.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
12
|
Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, Borgo A, Braunlin E, Eto Y, Gold JI, Jester A, Jones SA, Karsli C, Mackenzie W, Marinho DR, McFadyen A, McGill J, Mitchell JJ, Muenzer J, Okuyama T, Orchard PJ, Stevens B, Thomas S, Walker R, Wynn R, Giugliani R, Harmatz P, Hendriksz C, Scarpa M. Recommendations for the management of MPS VI: systematic evidence- and consensus-based guidance. Orphanet J Rare Dis 2019; 14:118. [PMID: 31142378 PMCID: PMC6541999 DOI: 10.1186/s13023-019-1080-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Mucopolysaccharidosis (MPS) VI or Maroteaux-Lamy syndrome (253200) is an autosomal recessive lysosomal storage disorder caused by deficiency in N-acetylgalactosamine-4-sulfatase (arylsulfatase B). The heterogeneity and progressive nature of MPS VI necessitates a multidisciplinary team approach and there is a need for robust guidance to achieve optimal management. This programme was convened to develop evidence-based, expert-agreed recommendations for the general principles of management, routine monitoring requirements and the use of medical and surgical interventions in patients with MPS VI. Methods 26 international healthcare professionals from various disciplines, all with expertise in managing MPS VI, and three patient advocates formed the Steering Committee group (SC) and contributed to the development of this guidance. Members from six Patient Advocacy Groups (PAGs) acted as advisors and attended interviews to ensure representation of the patient perspective. A modified-Delphi methodology was used to demonstrate consensus among a wider group of healthcare professionals with expertise and experience managing patients with MPS VI and the manuscript has been evaluated against the validated Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument by three independent reviewers. Results A total of 93 guidance statements were developed covering five domains: (1) general management principles; (2) recommended routine monitoring and assessments; (3) enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT); (4) interventions to support respiratory and sleep disorders; (5) anaesthetics and surgical interventions. Consensus was reached on all statements after two rounds of voting. The greatest challenges faced by patients as relayed by consultation with PAGs were deficits in endurance, dexterity, hearing, vision and respiratory function. The overall guideline AGREE II assessment score obtained for the development of the guidance was 5.3/7 (where 1 represents the lowest quality and 7 represents the highest quality of guidance). Conclusion This manuscript provides evidence- and consensus-based recommendations for the management of patients with MPS VI and is for use by healthcare professionals that manage the holistic care of patients with the intention to improve clinical- and patient-reported outcomes and enhance patient quality of life. It is recognised that the guidance provided represents a point in time and further research is required to address current knowledge and evidence gaps. Electronic supplementary material The online version of this article (10.1186/s13023-019-1080-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Tord D Alden
- Department of Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hernan Amartino
- Child Neurology Department, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Jane Ashworth
- Department of Paediatric Ophthalmology, Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kumar Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth I Berger
- Departments of Medicine and Neuroscience and Physiology, New York University School of Medicine, André Cournand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA
| | - Andrea Borgo
- Orthopaedics Clinic, Padova University Hospital, Padova, Italy
| | - Elizabeth Braunlin
- Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
| | - Yoshikatsu Eto
- Advanced Clinical Research Centre, Institute of Neurological Disorders, Kanagawa, Japan and Department of Paediatrics/Gene Therapy, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Jeffrey I Gold
- Keck School of Medicine, Departments of Anesthesiology, Pediatrics, and Psychiatry & Behavioural Sciences, Children's Hospital Los Angeles, Department of Anesthesiology Critical Care Medicine, 4650 Sunset Boulevard, Los Angeles, CA, USA
| | - Andrea Jester
- Hand and Upper Limb Service, Department of Plastic Surgery, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Simon A Jones
- Willink Biochemical Genetic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Cengiz Karsli
- Department of Anesthesiology and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
| | - William Mackenzie
- Department of Orthopedics, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Diane Ruschel Marinho
- Department of Ophthalmology, UFRGS, and Ophthalmology Service, HCPA, Porto Alegre, Brazil
| | | | - Jim McGill
- Department of Metabolic Medicine, Queensland Children's Hospital, Brisbane, Australia
| | - John J Mitchell
- Division of Pediatric Endocrinology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Joseph Muenzer
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Centre for Child Health and Development, Tokyo, Japan
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Robert Walker
- Department of Paediatric Anaesthesia, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert Wynn
- Department of Paediatric Haematology, Royal Manchester Children's Hospital, Manchester, UK
| | - Roberto Giugliani
- Department of Genetics, UFRGS, and Medical Genetics Service, HCPA, Porto Alegre, Brazil.
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Christian Hendriksz
- Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Maurizio Scarpa
- Center for Rare Diseases at Host Schmidt Kliniken, Wiesbaden, Germany and Department of Paediatrics, University of Padova, Padova, Italy
| | | | | |
Collapse
|
13
|
Abstract
High-resolution NMR and density functional theory (DFT) calculations have been applied to analysis of heparin pentasaccharide 3D structure in aqueous solution. The fully optimized molecular geometry of two pentasaccharide conformations (differing from each other in the form, one (1)C4 and the other (2)S0, of the sulfated iduronic acid residue) were obtained using the B3LYP/6-311+G(d,p) level of theory in the presence of solvent, the latter included as explicit water molecules. The presented approach enabled insight into variations of the bond lengths, bond angles, and torsion angles, formations of intra- and intermolecular hydrogen bonds, and ionic interactions in the two pentasaccharide conformations. A rather complex hydrogen bond network is formed, including inter-residue and intraresidue bonds between the NH group in the GlcN,3,6S with oxygens linked to C-2 at the IdoA2S residue and the glycosidic O-1 and the neighboring OSO3(-) group linked to C-3 in the same residue. On the other hand, because the first hydration shell is strongly influenced by strong ion-ion and ion-dipole interactions between sodium ions, sulfates, carboxylates, and -OH groups, ionic interactions play an important role in the stabilization of the 3D structure. The DFT-computed three-bond proton-proton coupling constants also showed that best agreement with experiment was obtained with a weighted average of 15:85 ((1)C4/(2)S0) of the sulfated iduronic acid forms indicating that the ratio is even more shifted toward the (2)S0 form than previously supposed. The DFT-computed pentasaccharide conformation differs from the previously published data, with the main changes at the glycosidic linkages, namely, the ψ1 torsion angles and the ϕ3 angle. The comparison of the glycosidic linkage torsion angle values in solution with the antithrombin-pentasaccharide complex also indicates that the pentasaccharide conformation changes upon binding to antithrombin III. The data supports the assumption that the protein selects the more populated (2)S0 conformer of heparin pentasaccharide and, consequently, the binding process of heparin pentasaccharide with antithrombin III is energetically more favorable than formerly expected.
Collapse
Affiliation(s)
- Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences , 845 38 Bratislava, Slovakia
| |
Collapse
|
14
|
Sattelle BM, Shakeri J, Cliff MJ, Almond A. Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale. Biomacromolecules 2015; 16:951-61. [PMID: 25645947 DOI: 10.1021/bm5018386] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proteoglycan spatiotemporal organization underpins extracellular matrix biology, but atomic scale glimpses of this microarchitecture are obscured by glycosaminoglycan size and complexity. To overcome this, multimicrosecond aqueous simulations of chondroitin and dermatan sulfates were abstracted into a prior coarse-grained model, which was extended to heterogeneous glycosaminoglycans and small leucine-rich proteoglycans. Exploration of relationships between sequence and shape led to hypotheses that proteoglycan size is dependent on glycosaminoglycan unit composition but independent of sequence permutation. Uronic acid conformational equilibria were modulated by adjacent hexosamine sulfonation and iduronic acid increased glycosaminoglycan chain volume and rigidity, while glucuronic acid imparted chain plasticity. Consequently, block copolymeric glycosaminoglycans contained microarchitectures capable of multivalent binding to growth factors and collagen, with potential for interactional synergy at greater chain number. The described atomic scale views of proteoglycans and heterogeneous glycosaminoglycans provide structural routes to understanding their fundamental signaling and mechanical biological roles and development of new biomaterials.
Collapse
Affiliation(s)
- Benedict M Sattelle
- Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | | | | |
Collapse
|
15
|
Liu P, Chen L, Toh JKC, Ang YL, Jee JE, Lim J, Lee SS, Lee SG. Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis. Chem Sci 2015; 6:450-456. [PMID: 28694940 PMCID: PMC5485393 DOI: 10.1039/c4sc02553a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
The challenges inherent in the synthesis of large glycosaminoglycan (GAG) polysaccharides have made chemically accessible multivalent glycoligands a valuable tool in the field of GAG mimetics. However, the difficulty of positioning sulfated sugar motifs at desired sites has hindered efforts to precisely tailor their biofunctions. Here, we achieved precise orientation of sulfated disaccharide motifs by taking advantage of a structurally well-defined polyproline scaffold, and describe systematic explorations into the importance of the spatial arrangement of sulfated sugars along the scaffold backbone in designing multivalent glycoligands. Our protein binding studies demonstrate that the specific conformational display of pendant sugars is central to direct their multivalent interactions with NGF. By employing computational modeling and cellular studies, we have further applied this approach to engineer NGF-mediated signaling by regulating the NGF/TrkA complexation process, leading to enhanced neuronal differentiation and neurite outgrowth of PC12 cells. Our findings offer a promising strategy for the pinpoint engineering of GAG-mediated biological processes and a novel method of designing new therapeutic agents that are highly specific to GAG-associated disease.
Collapse
Affiliation(s)
- Pei Liu
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Liwei Chen
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Jerry K C Toh
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Yi Li Ang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Joo-Eun Jee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| | - Song-Gil Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore . ; ; Tel: +65 6824 7131
| |
Collapse
|
16
|
Panagos CG, Thomson DS, Moss C, Hughes AD, Kelly MS, Liu Y, Chai W, Venkatasamy R, Spina D, Page CP, Hogwood J, Woods RJ, Mulloy B, Bavington CD, Uhrín D. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: conformation, selectin binding, and biological activity. J Biol Chem 2014; 289:28284-98. [PMID: 25147180 PMCID: PMC4192483 DOI: 10.1074/jbc.m114.572297] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/09/2014] [Indexed: 11/06/2022] Open
Abstract
Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcβ4,6S(1 → 4) [FucαX(1 → 3)]GlcAβ(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Charalampos G Panagos
- From the EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Derek S Thomson
- GlycoMar Ltd., European Centre for Marine Biotechnology, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, United Kingdom
| | - Claire Moss
- GlycoMar Ltd., European Centre for Marine Biotechnology, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, United Kingdom
| | - Adam D Hughes
- the Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, United Kingdom
| | - Maeve S Kelly
- the Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, United Kingdom
| | - Yan Liu
- the Glycosciences Laboratory, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Wengang Chai
- the Glycosciences Laboratory, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Radhakrishnan Venkatasamy
- the Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Domenico Spina
- the Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Clive P Page
- the Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - John Hogwood
- the National Institute of Biological Standards and Controls, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Robert J Woods
- the Complex Carbohydrate Research Center, the University of Georgia, Athens, Georgia 30602, and the School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Barbara Mulloy
- the Glycosciences Laboratory, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom, the Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Charlie D Bavington
- GlycoMar Ltd., European Centre for Marine Biotechnology, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, United Kingdom
| | - Dušan Uhrín
- From the EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom,
| |
Collapse
|
17
|
Agostino M, Gandhi NS, Mancera RL. Development and application of site mapping methods for the design of glycosaminoglycans. Glycobiology 2014; 24:840-51. [DOI: 10.1093/glycob/cwu045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Solution NMR conformation of glycosaminoglycans. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:61-8. [DOI: 10.1016/j.pbiomolbio.2014.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/10/2014] [Accepted: 01/17/2014] [Indexed: 11/18/2022]
|
19
|
Kramer M, Kleinpeter E. A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 212:174-185. [PMID: 21802325 DOI: 10.1016/j.jmr.2011.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
The conformational analyses of six non-rigid N-acetyl glucosamine (NAG) derivatives employing residual dipolar couplings (RDCs) and NOEs together with molecular dynamics (MD) simulations are presented. Due to internal dynamics we had to consider different conformer ratios existing in solution. The good quality of the correlation between theoretically and experimentally obtained RDCs show the correctness of the calculated conformers even if the ratios derived from the MD simulations do not exactly meet the experimental data. If possible, the results were compared to former published data and commented.
Collapse
Affiliation(s)
- Markus Kramer
- University of Potsdam, Department of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam/Golm, Germany
| | | |
Collapse
|
20
|
Säwén E, Stevensson B, Ostervall J, Maliniak A, Widmalm G. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations. J Phys Chem B 2011; 115:7109-21. [PMID: 21545157 DOI: 10.1021/jp2017105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational dynamics of the human milk oligosaccharide lacto-N-fucopentaose (LNF-1), α-L-Fucp-(1 → 2)-β-D-Galp-(1 → 3)-β-D-GlcpNAc-(1 → 3)-β-D-Galp-(1 → 4)-D-Glcp, has been analyzed using NMR spectroscopy and molecular dynamics (MD) computer simulations. Employing the Hadamard (13)C-excitation technique and the J-HMBC experiment, (1)H,(13)C trans-glycosidic J coupling constants were obtained, and from one- and two-dimensional (1)H,(1)H T-ROESY experiments, proton-proton cross-relaxation rates were determined in isotropic D(2)O solution. In the lyotropic liquid-crystalline medium consisting of ditetradecylphosphatidylcholine, dihexylphosphatidylcholine, N-cetyl-N,N,N-trimethylammonium bromide, and D(2)O, (1)H, (1)H and one-bond (1)H, (13)C residual dipolar couplings (RDCs), as well as relative sign information on homonuclear RDCs, were determined for the pentasaccharide. Molecular dynamics simulations with explicit water were carried out from which the internal isomerization relaxation time constant, τ(N), was calculated for transitions at the ψ torsion angle of the β-(1 → 3) linkage to the lactosyl group in LNF-1. Compared to the global reorientation time, τ(M), of ∼0.6 ns determined experimentally in D(2)O solution, the time constant for the isomerization relaxation process, τ(N(scaled)), is about one-third as large. The NMR parameters derived from the isotropic solution show very good agreement with those calculated from the MD simulations. The only notable difference occurs at the reducing end, which should be more flexible than observed by the molecular simulation, a conclusion in complete agreement with previous (13)C NMR relaxation data. A hydrogen-bond analysis of the MD simulation revealed that inter-residue hydrogen bonds on the order of ∼30% were present across the glycosidic linkages to sugar ring oxygens. This finding highlights that intramolecular hydrogen bonds might be important in preserving well-defined structures in otherwise flexible molecules. An analysis including generalized order parameters obtained from nuclear spin relaxation experiments was performed and successfully shown to limit the conformational space accessible to the molecule when the number of experimental data are too scarce for a complete conformational analysis.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Seo ES, Blaum BS, Vargues T, De Cecco M, Deakin JA, Lyon M, Barran PE, Campopiano DJ, Uhrín D. Interaction of human β-defensin 2 (HBD2) with glycosaminoglycans. Biochemistry 2010; 49:10486-95. [PMID: 21062008 DOI: 10.1021/bi1011749] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human β-defensin 2 (HBD2) is a member of the defensin family of antimicrobial peptides that plays important roles in the innate and adaptive immune system of both vertebrates and invertebrates. In addition to their direct bactericidal action, defensins are also involved in chemotaxis and Toll-like receptor activation. In analogy to chemokine/glycosaminoglycan (GAG) interactions, GAG-defensin complexes are likely to play an important role in chemotaxis and in presenting defensins to their receptors. Using a gel mobility shift assay, we found that HBD2 bound to a range of GAGs including heparin/heparan sulfate (HS), dermatan sulfate (DS), and chondroitin sulfate. We used NMR spectroscopy of (15)N-labeled HBD2 to map the binding sites for two GAG model compounds, a heparin/HS pentasaccharide (fondaparinux sodium; FX) and enzymatically prepared DS hexasaccharide (DSdp6). We identified a number of basic amino acids that form a common ligand binding site, which indicated that these interactions are predominantly electrostatic. The dissociation constant of the [DSdp6-HBD2] complex was determined by NMR spectroscopy to be 5 ± 5 μM. Binding of FX could not be quantified because of slow exchange on the NMR chemical shift time scale. FX was found to induce HBD2 dimerization as evidenced by the analysis of diffusion coefficients, (15)N relaxation, and nESI-MS measurements. The formation of FX-bridged HBD2 dimers exhibited features of a cooperative binding mechanism. In contrast, the complex with DSdp6 was found to be mostly monomeric.
Collapse
Affiliation(s)
- Emily S Seo
- EastChem, School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raghuraman A, Mosier PD, Desai UR. Understanding Dermatan Sulfate-Heparin Cofactor II Interaction through Virtual Library Screening. ACS Med Chem Lett 2010; 1:281-285. [PMID: 20835364 PMCID: PMC2936258 DOI: 10.1021/ml100048y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 06/06/2010] [Indexed: 11/30/2022] Open
Abstract
![]()
Dermatan sulfate, an important member of the glycosaminoglycan family, interacts with heparin cofactor II, a member of the serpin family of proteins, to modulate antithrombotic response. Yet, the nature of this interaction remains poorly understood at a molecular level. We report the genetic algorithm-based combinatorial virtual library screening study of a natural, high-affinity dermatan sulfate hexasaccharide with heparin cofactor II. Of the 192 topologies possible for the hexasaccharide, only 16 satisfied the “high-specificity” criteria used in computational study. Of these, 13 topologies were predicted to bind in the heparin-binding site of heparin cofactor II at a ∼60° angle to helix D, a novel binding mode. This new binding geometry satisfies all known solution and mutagenesis data and supports thrombin ternary complexation through a template mechanism. The study is expected to facilitate the design of allosteric agonists of heparin cofactor II as antithrombotic agents.
Collapse
Affiliation(s)
- Arjun Raghuraman
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0540
| | - Philip D. Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0540
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0540
| |
Collapse
|
23
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
24
|
Zhang Z, Li B, Suwan J, Zhang F, Wang Z, Liu H, Mulloy B, Linhardt RJ. Analysis of pharmaceutical heparins and potential contaminants using 1H-NMR and PAGE. J Pharm Sci 2009; 98:4017-26. [DOI: 10.1002/jps.21729] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Jin L, Hricovíni M, Deakin JA, Lyon M, Uhrín D. Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin. Glycobiology 2009; 19:1185-96. [PMID: 19648354 PMCID: PMC2757574 DOI: 10.1093/glycob/cwp105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The solution conformation of a fully sulfated heparin-derived tetrasaccharide, I, was studied in the presence of a 4-fold excess of Ca2+. Proton–proton and proton–carbon residual dipolar couplings (RDCs) were measured in a neutral aligning medium. The order parameters of two rigid hexosamine rings of I were determined separately using singular value decomposition and ab initio structures of disaccharide fragments of I. The order parameters were very similar implying that a common order tensor can be used to analyze the structure of I. Using one order tensor, RDCs of both hexosamine rings were used as restraints in molecular dynamics simulations. RDCs of the inner iduronic acid were calculated for every point of the molecular dynamics trajectory. The fitting of the calculated RDCs of the two forms of the iduronic acid to the experimental values yielded a population of 1C4 and 2So conformers of iduronic acid that agreed well with the analysis based on proton–proton scalar coupling constants. The glycosidic linkage torsion angles in RDC-restrained molecular dynamics (MD) structures of I are consistent with the interglycosidic three-bond proton–carbon coupling constants. These structures also show that the shape of heparin is not affected dramatically by the conformational flexibility of the iduronic acid ring. This is in line with conclusions of previous studies based on MD simulations and the analysis of 1H-1H NOEs. Our work therefore demonstrates the effectiveness of RDCs in the conformational analysis of glycosaminoglycans.
Collapse
Affiliation(s)
- Lan Jin
- School of Chemistry, University of Edinburgh, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
26
|
Kummerlöwe G, Luy B. Residual dipolar couplings as a tool in determining the structure of organic molecules. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2008.11.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Affiliation(s)
- Christina M. Thiele
- Technische Universität Darmstadt, Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Petersenstr. 22, 64287 Darmstadt, Germany, Fax: +49‐6151‐165531
| |
Collapse
|
28
|
Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ. Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 2008; 130:12998-3007. [PMID: 18767845 PMCID: PMC2637250 DOI: 10.1021/ja8026345] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the first chemoenzymatic synthesis of the stable isotope-enriched heparin from a uniformly labeled [(13)C,(15)N]N-acetylheparosan (-GlcA(1,4)GlcNAc-) prepared from E. coli K5. Glycosaminoglycan (GAG) precursors and heparin were formed from N-acetylheparosan by the following steps: chemical N-deacetylation and N-sulfonation leading to N-sulfoheparosan (-GlcA(1,4)GlcNS-); enzyme-catalyzed C5-epimerization and 2-O-sulfonation leading to undersulfated heparin (-IdoA2S(1,4)GlcNS-); enzymatic 6-O-sulfonation leading to the heparin backbone (-IdoA2S(1,4)GlcNS6S-); and selective enzymatic 3-O-sulfonation leading to the anticoagulant heparin, containing the GlcNS6S3S residue. Heteronuclear, multidimensional nuclear magnetic resonance spectroscopy was employed to analyze the chemical composition and solution structure of [(13)C,(15)N]N-acetylheparosan, precursors, and heparin. Isotopic enrichment was found to provide well-resolved (13)C spectra with the high sensitivity required for conformational studies of these biomolecules. Stable isotope-labeled heparin was indistinguishable from heparin derived from animal tissues and is a novel reagent for studying the interaction of heparin with proteins.
Collapse
|