1
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
2
|
G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed Pharmacother 2021; 139:111550. [PMID: 33831835 DOI: 10.1016/j.biopha.2021.111550] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes (G4) are secondary four-stranded DNA helical structures consisting of guanine-rich nucleic acids, which can be formed in the promoter regions of several genes under proper conditions. Several cancer cells have been shown to emerge from genomic changes in the expression of crucial growth-regulating genes that allow cells to develop and begin to propagate in an undifferentiated state. Recent attempts have focused on producing treatments targeted at particular protein products of genes that are abnormally expressed. Many of the proteins found are hard to target and considered undruggable due to structural challenges, protein overexpression, or mutations that affect treatment resistance. The utilization of small molecules that stabilize secondary DNA structures existing in several possible oncogenes' promoters and modulate their transcription is a new strategy that avoids some of these problems. In this review, we outline the function of G-quadruplex stabilization in cancer by small-molecules with the aim to improve cancer therapy.
Collapse
|
3
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
4
|
Wang L, Saarela J, Poque S, Valkonen JP. Development of FRET-based high-throughput screening for viral RNase III inhibitors. MOLECULAR PLANT PATHOLOGY 2020; 21:961-974. [PMID: 32436305 PMCID: PMC7280029 DOI: 10.1111/mpp.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose-response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.
Collapse
Affiliation(s)
- Linping Wang
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Jani Saarela
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Sylvain Poque
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Jari P.T. Valkonen
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Silva-Brenes D, Delgado L, Rivera JM. Tracking the formation of supramolecular G-quadruplexes via self-assembly enhanced emission. Org Biomol Chem 2018; 15:782-786. [PMID: 27995252 DOI: 10.1039/c6ob02586b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the synthesis and self-assembly of two lipophilic 2'-deoxyguanosine (G) derivatives whose fluorescence intensity is modulated by self-assembly into supramolecular G-quadruplexes (SGQs). Whereas both derivatives self-assemble isostructurally, one shows up to 100% emission enhancement while the other shows an initial enhancement, followed by 10% quenching. Thus, the rotational restrictions resulting from self-assembly are enough to induce significant changes in emission, but it is critical to consider the specific interactions between fluorophores since they will determine the ultimate emission signature. These findings could open the door to the development of luminescent supramolecular sensors and probes.
Collapse
Affiliation(s)
- Diana Silva-Brenes
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, 00926, Puerto Rico.
| | - Loruhama Delgado
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, 00926, Puerto Rico.
| | - José M Rivera
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, 00926, Puerto Rico.
| |
Collapse
|
7
|
Beauvineau C, Guetta C, Teulade-Fichou MP, Mahuteau-Betzer F. PhenDV, a turn-off fluorescent quadruplex DNA probe for improving the sensitivity of drug screening assays. Org Biomol Chem 2017; 15:7117-7121. [DOI: 10.1039/c7ob01705g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PhenDV is a light-up probe for G4-fluorescent intercalator displacement. This potent G4-DNA binder discriminates between medium and high-affinity ligands.
Collapse
Affiliation(s)
| | - Corinne Guetta
- Institut Curie
- PSL Research University
- CNRS
- INSERM
- UMR9187/U1196
| | | | | |
Collapse
|
8
|
Jamroskovic J, Livendahl M, Eriksson J, Chorell E, Sabouri N. Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool. Chemistry 2016; 22:18932-18943. [DOI: 10.1002/chem.201603463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| | | | - Jonas Eriksson
- Laboratories for Chemical Biology Umeå; Chemical Biology Consortium Sweden; Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Erik Chorell
- Department of Chemistry; Umeå University; Umeå 901 87 Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå 901 87 Sweden
| |
Collapse
|
9
|
Abstract
G-quadruplexes are non-canonical secondary structures found in guanine rich regions of DNA and RNA. Reports have indicated the wide occurrence of RNA G-quadruplexes across the transcriptome in various regions of mRNAs and non-coding RNAs. RNA G-quadruplexes have been implicated in playing an important role in translational regulation, mRNA processing events and maintenance of chromosomal end integrity. In this review, we summarize the structural and functional aspects of RNA G-quadruplexes with emphasis on recent progress to understand the protein/trans factors binding these motifs. With the revelation of the importance of these secondary structures as regulatory modules in biology, we have also evaluated the various advancements towards targeting these structures and the challenges associated with them. Apart from this, numerous potential applications of this secondary motif have also been discussed.
Collapse
Affiliation(s)
- Prachi Agarwala
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | |
Collapse
|
10
|
Tanpure AA, Srivatsan SG. Conformation-sensitive nucleoside analogues as topology-specific fluorescence turn-on probes for DNA and RNA G-quadruplexes. Nucleic Acids Res 2015. [PMID: 26202965 PMCID: PMC4678839 DOI: 10.1093/nar/gkv743] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Development of probes that can discriminate G-quadruplex (GQ) structures and indentify efficient GQ binders on the basis of topology and nucleic acid type is highly desired to advance GQ-directed therapeutic strategies. In this context, we describe the development of minimally perturbing and environment-sensitive pyrimidine nucleoside analogues, based on a 5-(benzofuran-2-yl)uracil core, as topology-specific fluorescence turn-on probes for human telomeric DNA and RNA GQs. The pyrimidine residues of one of the loop regions (TTA) of telomeric DNA and RNA GQ oligonucleotide (ON) sequences were replaced with 5-benzofuran-modified 2′-deoxyuridine and uridine analogues. Depending on the position of modification the fluorescent nucleoside analogues distinguish antiparallel, mixed parallel-antiparallel and parallel stranded DNA and RNA GQ topologies from corresponding duplexes with significant enhancement in fluorescence intensity and quantum yield. Further, these GQ sensors enabled the development of a simple fluorescence binding assay to quantify topology- and nucleic acid-specific binding of small molecule ligands to GQ structures. Together, our results demonstrate that these nucleoside analogues are useful GQ probes, which are anticipated to provide new opportunities to study and discover efficient G-quadruplex binders of therapeutic potential.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
11
|
Novotna J, Laguerre A, Granzhan A, Pirrotta M, Teulade-Fichou MP, Monchaud D. Cationic azacryptands as selective three-way DNA junction binding agents. Org Biomol Chem 2015; 13:215-22. [DOI: 10.1039/c4ob01846j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azacryptands are promising candidates for assessing the therapeutic potential of three-way DNA junctions.
Collapse
Affiliation(s)
- Jana Novotna
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
- Department of Analytical Chemistry
| | | | | | - Marc Pirrotta
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
| | | | - David Monchaud
- Institute of Molecular Chemistry
- University of Dijon
- Dijon
- France
| |
Collapse
|
12
|
Garavís M, López-Méndez B, Somoza A, Oyarzabal J, Dalvit C, Villasante A, Campos-Olivas R, González C. Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19F-NMR based fragment screening. ACS Chem Biol 2014; 9:1559-66. [PMID: 24837572 DOI: 10.1021/cb500100z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeric repeat-containing RNA (TERRA) is a novel and very attractive antitumoral target. Here, we report the first successful application of (19)F-NMR fragment-based screening to identify chemically diverse compounds that bind to an RNA molecule such as TERRA. We have built a library of 355 fluorinated fragments, and checked their interaction with a long telomeric RNA as a target molecule. The screening resulted in the identification of 20 hits (hit rate of 5.6%). For a number of binders, their interaction with TERRA was confirmed by (19)F- and (1)H NMR as well as by CD melting experiments. We have also explored the selectivity of the ligands for RNA G-quadruplexes and found that some of the hits do not interact with other nucleic acids such as tRNA and duplex DNA and, most importantly, favor the propeller-like parallel conformation in telomeric DNA G-quadruplexes. This suggests a selective recognition of this particular quadruplex topology and that different ligands may recognize specific sites in propeller-like parallel G-quadruplexes. Such features make some of the resulting binders promising lead compounds for fragment based drug discovery.
Collapse
Affiliation(s)
- Miguel Garavís
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
- Centro
de Biología Molecular “‘Severo Ochoa”’
(CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás
Cabrera1, Cantoblanco, 28049 Madrid, Spain
| | - Blanca López-Méndez
- Spectroscopy and
NMR Unit and Experimental Therapeutics Programme, Spanish National
Cancer Research Center (CNIO), Melchor
Fernández Almagro 3, 28029 Madrid, Spain
| | - Alvaro Somoza
- IMDEA Nanociencia
and CNB-CSIC-IMDEA Nanociencia Associated Unit ‘‘Unidad
de Nanobiotecnologia’’, C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Julen Oyarzabal
- Spectroscopy and
NMR Unit and Experimental Therapeutics Programme, Spanish National
Cancer Research Center (CNIO), Melchor
Fernández Almagro 3, 28029 Madrid, Spain
| | - Claudio Dalvit
- Spectroscopy and
NMR Unit and Experimental Therapeutics Programme, Spanish National
Cancer Research Center (CNIO), Melchor
Fernández Almagro 3, 28029 Madrid, Spain
| | - Alfredo Villasante
- Centro
de Biología Molecular “‘Severo Ochoa”’
(CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás
Cabrera1, Cantoblanco, 28049 Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and
NMR Unit and Experimental Therapeutics Programme, Spanish National
Cancer Research Center (CNIO), Melchor
Fernández Almagro 3, 28029 Madrid, Spain
| | - Carlos González
- Instituto de Química Física ‘Rocasolano’, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
13
|
Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett 2014; 24:2602-12. [DOI: 10.1016/j.bmcl.2014.04.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/24/2023]
|
14
|
Ohnmacht SA, Varavipour E, Nanjunda R, Pazitna I, Di Vita G, Gunaratnam M, Kumar A, Ismail MA, Boykin DW, Wilson WD, Neidle S. Discovery of new G-quadruplex binding chemotypes. Chem Commun (Camb) 2014; 50:960-3. [PMID: 24302123 PMCID: PMC3901018 DOI: 10.1039/c3cc48616h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here on the discovery and preliminary evaluation of a novel non-macrocyclic low molecular weight quadruplex-stabilizing chemotype. The lead compounds, based on a furan core, show high G-quadruplex stabilisation and selectivity as well as potent in vitro anti-proliferative activity.
Collapse
|
15
|
Rivera JM, Martín-Hidalgo M, Rivera-Ríos JC. An aquatic host-guest complex between a supramolecular G-quadruplex and the anticancer drug doxorubicin. Org Biomol Chem 2013; 10:7562-5. [PMID: 22895684 DOI: 10.1039/c2ob25913c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the synthesis of a fluorescent deoxyguanosine derivative that co-assembles (in water) with an unlabeled analogue into a heteromeric supramolecular G-quadruplex, which forms a host-guest complex with doxorubicin as evidenced by FRET experiments.
Collapse
Affiliation(s)
- José M Rivera
- Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan, PR 00931, USA.
| | | | | |
Collapse
|
16
|
Stefan L, Bertrand B, Richard P, Le Gendre P, Denat F, Picquet M, Monchaud D. Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures. Chembiochem 2012; 13:1905-12. [DOI: 10.1002/cbic.201200396] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Indexed: 01/19/2023]
|
17
|
Rahman KM, Tizkova K, Reszka AP, Neidle S, Thurston DE. Identification of novel telomeric G-quadruplex-targeting chemical scaffolds through screening of three NCI libraries. Bioorg Med Chem Lett 2012; 22:3006-10. [PMID: 22421021 DOI: 10.1016/j.bmcl.2012.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/26/2022]
Abstract
Thirteen compounds with diverse chemical structures have been identified as selective telomeric G-quadruplex-binding ligands through screening the NCI Diversity Set II, the NCI Natural Products Set II and the NCI Mechanistic Diversity Set libraries containing a total of 2307 members against a human telomeric G-quadruplex using a FRET-based DNA melting assay. These compounds show significant selectivity towards a telomeric G-quadruplex compared to duplex DNA, fall within a molecular weight range of 327-533, and are generally consistent with the Lipinski Rule of Five for drug-likeness. Thus they provide new chemical scaffolds for the development of novel classes of G-quadruplex-targeting agents.
Collapse
|
18
|
Vuong S, Stefan L, Lejault P, Rousselin Y, Denat F, Monchaud D. Identifying three-way DNA junction-specific small-molecules. Biochimie 2011; 94:442-50. [PMID: 21884749 DOI: 10.1016/j.biochi.2011.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022]
Abstract
Three-way junction DNA (TWJ-DNA, also known as 3WJ-DNA) is an alternative secondary DNA structure comprised of three duplex-DNAs that converge towards a single point, termed the branch point. This point is characterized by unique geometrical properties that make its specific targeting by synthetic small-molecules possible. Such a targeting has already been demonstrated in the solid state but not thoroughly biophysically investigated in solution. Herein, a set of simple biophysical assays has been developed to identify TWJ-specific small-molecule ligands; these assays, inspired by the considerable body of work that has been reported to characterize the interactions between small-molecules and other higher-order DNA (notably quadruplex-DNA), have been calibrated with a known non-specific DNA binder (the porphyrin TMPyP4) and validated via the study of a small series of triazacyclononane (TACN) derivatives (metal-free or not) and the identification of a fairly-affinic and exquisitely TWJ-selective candidate (a TACN-quinoline construct named TACN-Q).
Collapse
Affiliation(s)
- Sophie Vuong
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS UMR5260, 9 Avenue Alain Savary, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
19
|
Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 2011; 40:5867-92. [PMID: 21789296 DOI: 10.1039/c1cs15067g] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intriguing structural diversity in folded topologies available to guanine-rich nucleic acid repeat sequences have made four-stranded G-quadruplex structures the focus of both basic and applied research, from cancer biology and novel therapeutics through to nanoelectronics. Distributed widely in the human genome as targets for regulating gene expression and chromosomal maintenance, they offer unique avenues for future cancer drug development. In particular, the recent advances in chemical and structural biology have enabled the construction of bespoke selective DNA based aptamers to be used as novel therapeutic agents and access to detailed structural models for structure based drug discovery. In this critical review, we will explore the important underlying characteristics of G-quadruplexes that make them functional, stable, and predictable nanoscaffolds. We will review the current structural database of folding topologies, molecular interfaces and novel interaction surfaces, with a consideration to their future exploitation in drug discovery, molecular biology, supermolecular assembly and aptamer design. In recent years the number of potential applications for G-quadruplex motifs has rapidly grown, so in this review we aim to explore the many future challenges and highlight where possible successes may lie. We will highlight the similarities and differences between DNA and RNA folded G-quadruplexes in terms of stability, distribution, and exploitability as small molecule targets. Finally, we will provide a detailed review of basic G-quadruplex geometry, experimental tools used, and a critical evaluation of the application of high-resolution structural biology and its ability to provide meaningful and valid models for future applications (255 references).
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, UK WC1N 1AX
| | | |
Collapse
|