1
|
Ma X, Wang Q, Chen K, Shen Y, Guan J, Xu M, Rao Z, Zhang X. Protein Engineering and Dual-Module Optimization for Efficient NMN Production in E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9174-9186. [PMID: 40172130 DOI: 10.1021/acs.jafc.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nicotinamide mononucleotide (NMN) has received widespread attention as a supplement of NAD+ in cells. In this study, a dual-module reaction system was constructed to synthesize NR using uridine and nicotinamide, and further to efficiently synthesize NMN. First, module 1 was constructed, which catalyzed the synthesis of NMN from NR using an efficient NRK and ATP regeneration system. Then module 2 was constructed by introducing pyrimidine nucleoside phosphorylase (PyNP) to synthesize NMN from uridine and NAM under the synergistic catalysis of NRK. Based on the fact that NRK has both phosphorylation and group transfer functions in the dual-module system, the mutant KlmNRKM4 with nearly 4-fold increased stability was obtained through predicted structure and evolutionary conservation analysis. At the same time, the pncC, deoD, ushA, nadR and deoB genes encoding endogenous degradative enzymes in Escherichia coli affect substrate and intermediate conversion were knocked out. Finally, by optimizing the reaction conditions of the dual-module recombination system, a high NMN conversion rate of 81.1% was achieved using 300 mM uridine and nicotinamide as substrates. This study provides a novel and efficient pathway for the biosynthesis of NMN.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kewei Chen
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingyi Guan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Hunter Wilson R, Diaz DJ, Damodaran AR, Bhagi-Damodaran A. Machine Learning Guided Rational Design of a Non-Heme Iron-Based Lysine Dioxygenase Improves its Total Turnover Number. Chembiochem 2024; 25:e202400495. [PMID: 39370399 DOI: 10.1002/cbic.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based self-supervised machine learning framework, MutComputeX, with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher expression yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40 % improvement in the TTN (218±3) as compared to WT LDO (TTN=160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| | - Daniel J Diaz
- Department of Chemistry, Department of Computer Science, University of Texas at Austin, Austin, TX-78705, United States
- Institute for Foundations of Machine Learning, University of Texas at Austin, Austin, TX-78705, United States
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN-55455, United States
| |
Collapse
|
3
|
Hunter Wilson R, Damodaran AR, Bhagi-Damodaran A. Machine learning guided rational design of a non-heme iron-based lysine dioxygenase improves its total turnover number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597480. [PMID: 38895203 PMCID: PMC11185610 DOI: 10.1101/2024.06.04.597480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based machine-learning algorithm with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40% improvement in the TTN (218±3) as compared to WT LDO (TTN = 160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455
| | | |
Collapse
|
4
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
5
|
Heckmann C, Bürgler M, Paul CE. Peroxygenase-Catalyzed Allylic Oxidation Unlocks Telescoped Synthesis of (1 S,3 R)-3-Hydroxycyclohexanecarbonitrile. ACS Catal 2024; 14:2985-2991. [PMID: 38449536 PMCID: PMC10913032 DOI: 10.1021/acscatal.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The unmatched chemo-, regio-, and stereoselectivity of enzymes renders them powerful catalysts in the synthesis of chiral active pharmaceutical ingredients (APIs). Inspired by the discovery route toward the LPA1-antagonist BMS-986278, access to the API building block (1S,3R)-3-hydroxycyclohexanecarbonitrile was envisaged using an ene reductase (ER) and alcohol dehydrogenase (ADH) to set both stereocenters. Starting from the commercially available cyclohexene-1-nitrile, a C-H oxyfunctionalization step was required to introduce the ketone functional group, yet several chemical allylic oxidation strategies proved unsuccessful. Enzymatic strategies for allylic oxidation are underdeveloped, with few examples on selected substrates with cytochrome P450s and unspecific peroxygenases (UPOs). In this case, UPOs were found to catalyze the desired allylic oxidation with high chemo- and regioselectivity, at substrate loadings of up to 200 mM, without the addition of organic cosolvents, thus enabling the subsequent ER and ADH steps in a three-step one-pot cascade. UPOs even displayed unreported enantioselective oxyfunctionalization and overoxidation of the substituted cyclohexene. After screening of enzyme panels, the final product was obtained at titers of 85% with 97% ee and 99% de, with a substrate loading of 50 mM, the ER being the limiting step. This synthetic approach provides the first example of a three-step, one-pot UPO-ER-ADH cascade and highlights the potential for UPOs to catalyze diverse enantioselective allylic hydroxylations and oxidations that are otherwise difficult to achieve.
Collapse
Affiliation(s)
- Christian
M. Heckmann
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Moritz Bürgler
- Bisy
GmbH, Wünschendorf
292, 8200 Hofstätten
an der Raab, Austria
| | - Caroline E. Paul
- Biocatalysis
section, Department of Biotechnology, Delft
University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
6
|
Harwood LA, Xiong Z, Christensen KE, Wang R, Wong LL, Robertson J. Selective P450 BM3 Hydroxylation of Cyclobutylamine and Bicyclo[1.1.1]pentylamine Derivatives: Underpinning Synthetic Chemistry for Drug Discovery. J Am Chem Soc 2023; 145:27767-27773. [PMID: 38051939 PMCID: PMC10740007 DOI: 10.1021/jacs.3c10542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Achieving single-step syntheses of a set of related compounds divergently and selectively from a common starting material affords substantial efficiency gains when compared with preparing those same compounds by multiple individual syntheses. In order for this approach to be realized, complementary reagent systems must be available; here, a panel of engineered P450BM3 enzymes is shown to fulfill this remit in the selective C-H hydroxylation of cyclobutylamine derivatives at chemically unactivated sites. The oxidations can proceed with high regioselectivity and stereoselectivity, producing valuable bifunctional intermediates for synthesis and applications in fragment-based drug discovery. The process also applies to bicyclo[1.1.1]pentyl (BCP) amine derivatives to achieve the first direct enantioselective functionalization of the bridging methylenes and open a short and efficient route to chiral BCP bioisosteres for medicinal chemistry. The combination of substrate, enzyme, and reaction engineering provides a powerful general platform for small-molecule elaboration and diversification.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ziyue Xiong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ruiyao Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou Industrial
Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Luet L. Wong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Jeremy Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
7
|
Marshall LR, Bhattacharya S, Korendovych IV. Fishing for Catalysis: Experimental Approaches to Narrowing Search Space in Directed Evolution of Enzymes. JACS AU 2023; 3:2402-2412. [PMID: 37772192 PMCID: PMC10523367 DOI: 10.1021/jacsau.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023]
Abstract
Directed evolution has transformed protein engineering offering a path to rapid improvement of protein properties. Yet, in practice it is limited by the hyper-astronomic protein sequence search space, and approaches to identify mutagenic hot spots, i.e., locations where mutations are most likely to have a productive impact, are needed. In this perspective, we categorize and discuss recent progress in the experimental approaches (broadly defined as structural, bioinformatic, and dynamic) to hot spot identification. Recent successes in harnessing protein dynamics and machine learning approaches provide new opportunities for the field and will undoubtedly help directed evolution reach its full potential.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| | - Sagar Bhattacharya
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
11
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
12
|
Qing Z, Mao P, Wang T, Zhai H. Asymmetric Total Syntheses of Cephalotane-Type Diterpenoids Cephanolides A-D. J Am Chem Soc 2022; 144:10640-10646. [PMID: 35653731 DOI: 10.1021/jacs.2c03978] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cephanolides A-D are cephalotane-type diterpenoids featuring a novel 6/6/6/5 tetracyclic core embedded with a bridged δ-lactone. The asymmetric and divergent total syntheses of cephanolides A-D have been accomplished, proceeding in 11-14 steps from a known alcohol. The salient features of the present work include (i) a substrate-controlled diastereoselective intermolecular Diels-Alder reaction to form the 6-6 cis-fused rings, (ii) a palladium-catalyzed formal bimolecular [2 + 2 + 2] cycloaddition reaction via a partially intermolecular cascade reaction sequence involving multiple carbometalations to rapidly install the key tetracyclic skeleton, and (iii) lactonization and late-stage oxidative diversification to complete total syntheses of the four benzenoid cephanolides.
Collapse
Affiliation(s)
- Zhineng Qing
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Peng Mao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Tie Wang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
13
|
Wan NW, Cui HB, Zhao L, Shan J, Chen K, Wang ZQ, Zhou XJ, Cui BD, Han WY, Chen YZ. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric high throughput screening method was developed based on a dual-enzyme cascade and used for the directed evolution of cytochrome P450 hydroxylase activity.
Collapse
Affiliation(s)
- Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Zhong-Qiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
14
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
15
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
16
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
17
|
Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev 2020; 49:8137-8155. [PMID: 32701110 PMCID: PMC8177087 DOI: 10.1039/d0cs00440e] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
18
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
19
|
de Rond T, Gao J, Zargar A, de Raad M, Cunha J, Northen TR, Keasling JD. A High-Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angew Chem Int Ed Engl 2019; 58:10114-10119. [PMID: 31140688 PMCID: PMC6640108 DOI: 10.1002/anie.201901782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Assaying for enzymatic activity is a persistent bottleneck in biocatalyst and drug development. Existing high-throughput assays for enzyme activity tend to be applicable only to a narrow range of biochemical transformations, whereas universal enzyme characterization methods usually require chromatography to determine substrate turnover, greatly diminishing throughput. We present an enzyme activity assay that allows the high-throughput mass-spectrometric detection of enzyme activity in complex matrices without the need for a chromatographic step. This technology, which we call probing enzymes with click-assisted NIMS (PECAN), can detect the activity of medically and biocatalytically significant cytochrome P450s in cell lysate, microsomes, and bacteria. Using this approach, a cytochrome P450BM3 mutant library was successfully screened for the ability to catalyze the oxidation of the sesquiterpene valencene.
Collapse
Affiliation(s)
- Tristan de Rond
- College of Chemistry, University of California, Berkeley, Berkeley, CA 94270 (USA); Joint Bioenergy Institute (JBEI), Lawrence Berkeley National Laboratory, Emeryville, CA 94608 (USA); Current Affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037 (USA)
| | - Jian Gao
- Department of Energy Joint Genome Institute (DOE JGI), Lawrence Berkeley National Laboratory
| | - Amin Zargar
- Joint Bioenergy Institute (JBEI), Lawrence Berkeley National Laboratory, Emeryville, CA 94608 (USA)
| | - Markus de Raad
- Department of Energy Joint Genome Institute (DOE JGI), Lawrence Berkeley National Laboratory; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory
| | - Jack Cunha
- Joint Bioenergy Institute (JBEI), Lawrence Berkeley National Laboratory, Emeryville, CA 94608 (USA)
| | - Trent R. Northen
- Joint Bioenergy Institute (JBEI), Lawrence Berkeley National Laboratory, Emeryville, CA 94608 (USA); Department of Energy Joint Genome Institute (DOE JGI), Lawrence Berkeley National Laboratory; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory
| | - Jay D. Keasling
- College of Chemistry, University of California, Berkeley, Berkeley, CA 94270 (USA); Joint Bioenergy Institute (JBEI), Lawrence Berkeley National Laboratory, Emeryville, CA 94608 (USA); Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory; Center for Biosustainability, Danish Technical University, Lyngby, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| |
Collapse
|
20
|
Tee KL, Xu JH, Wong TS. Protein engineering for bioreduction of carboxylic acids. J Biotechnol 2019; 303:53-64. [PMID: 31325477 DOI: 10.1016/j.jbiotec.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Carboxylic acids (CAs) are widespread in Nature. A prominent example is fatty acids, a major constituent of lipids. CAs are potentially economical precursors for bio-based products such as bio-aldehydes and bio-alcohols. However, carboxylate reduction is a challenging chemical transformation due to the thermodynamic stability of carboxylate. Carboxylic acid reductases (CARs), found in bacteria and fungi, offer a good solution to this challenge. These enzymes catalyse the NADPH- and ATP-dependent reduction of aliphatic and aromatic CAs. This review summarised all the protein engineering work that has been done on these versatile biocatalysts to date. The intricate catalytic mechanism and structure of CARs prompted us to first examine their domain architecture to facilitate the subsequent discussion of various protein engineering strategies. This then led to a survey of assays to detect aldehyde formation and to monitor aldenylation activity. Strategies for NADPH and ATP regeneration were also incorporated, as they are deemed vital to developing preparative-scale biocatalytic process and high-throughput screening systems. The objectives of the review are to consolidate CAR engineering research, stimulate interest, discussion or debate, and advance the field of bioreduction.
Collapse
Affiliation(s)
- Kang Lan Tee
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
21
|
de Rond T, Gao J, Zargar A, de Raad M, Cunha J, Northen TR, Keasling JD. A High‐Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tristan de Rond
- College of Chemistry University of California, Berkeley Berkeley CA 94270 USA
- Joint Bioenergy Institute (JBEI) Lawrence Berkeley National Laboratory Emeryville CA 94608 USA
- Current address: Scripps Institution of Oceanography University of California, San Diego La Jolla CA 92037 USA
| | - Jian Gao
- Department of Energy Joint Genome Institute (DOE JGI) Lawrence Berkeley National Laboratory USA
| | - Amin Zargar
- Joint Bioenergy Institute (JBEI) Lawrence Berkeley National Laboratory Emeryville CA 94608 USA
| | - Markus de Raad
- Department of Energy Joint Genome Institute (DOE JGI) Lawrence Berkeley National Laboratory USA
- Environmental Genomics and Systems Biology Lawrence Berkeley National Laboratory USA
| | - Jack Cunha
- Joint Bioenergy Institute (JBEI) Lawrence Berkeley National Laboratory Emeryville CA 94608 USA
| | - Trent R. Northen
- Joint Bioenergy Institute (JBEI) Lawrence Berkeley National Laboratory Emeryville CA 94608 USA
- Department of Energy Joint Genome Institute (DOE JGI) Lawrence Berkeley National Laboratory USA
- Environmental Genomics and Systems Biology Lawrence Berkeley National Laboratory USA
| | - Jay D. Keasling
- College of Chemistry University of California, Berkeley Berkeley CA 94270 USA
- Joint Bioenergy Institute (JBEI) Lawrence Berkeley National Laboratory Emeryville CA 94608 USA
- Biological Systems and Engineering Division Lawrence Berkeley National Laboratory USA
- Center for Biosustainability Danish Technical University Lyngby Denmark
- Center for Synthetic Biochemistry Institute for Synthetic Biology Shenzhen Institutes of Advanced Technology Shenzhen China
| |
Collapse
|
22
|
Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Regio‐ and Enantio‐selective Chemo‐enzymatic C−H‐Lactonization of Decanoic Acid to (S)‐δ‐Decalactone. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jack Manning
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Michele Tavanti
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Joanne L. Porter
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Nico Kress
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Sam P. De Visser
- School of Chemical Engineering and Analytical ScienceThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| |
Collapse
|
23
|
Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Regio- and Enantio-selective Chemo-enzymatic C-H-Lactonization of Decanoic Acid to (S)-δ-Decalactone. Angew Chem Int Ed Engl 2019; 58:5668-5671. [PMID: 30861252 DOI: 10.1002/anie.201901242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 12/18/2022]
Abstract
The conversion of saturated fatty acids to high value chiral hydroxy-acids and lactones poses a number of synthetic challenges: the activation of unreactive C-H bonds and the need for regio- and stereoselectivity. Here the first example of a wild-type cytochrome P450 monooxygenase (CYP116B46 from Tepidiphilus thermophilus) capable of enantio- and regioselective C5 hydroxylation of decanoic acid 1 to (S)-5-hydroxydecanoic acid 2 is reported. Subsequent lactonization yields (S)-δ-decalactone 3, a high value fragrance compound, with greater than 90 % ee. Docking studies provide a rationale for the high regio- and enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Jack Manning
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Michele Tavanti
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Joanne L Porter
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Nico Kress
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sam P De Visser
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nicholas J Turner
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| |
Collapse
|
24
|
Syntrivanis LD, Wong LL, Robertson J. Hydroxylation of Eleuthoside Synthetic Intermediates by P450BM3
(CYP102A1). European J Org Chem 2018. [DOI: 10.1002/ejoc.201801206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Luet Lok Wong
- Department of Chemistry; Inorganic Chemistry Laboratory; University of Oxford; South Parks Road 3QR Oxford, OX1 UK
| | - Jeremy Robertson
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road 3TA (UK) Oxford, OX1
| |
Collapse
|
25
|
Zhou J, Wang Y, Xu G, Wu L, Han R, Schwaneberg U, Rao Y, Zhao YL, Zhou J, Ni Y. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones. J Am Chem Soc 2018; 140:12645-12654. [PMID: 30247889 DOI: 10.1021/jacs.8b08640] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diaryl ketones are important building blocks for synthesizing pharmaceuticals and are generally regarded as "difficult-to-reduce" ketones due to the large steric hindrance of their two bulky aromatic side chains. Alcohol dehydrogenase from Kluyveromyces polyspora ( KpADH) has been identified as a robust biocatalyst due to its high conversion of diaryl ketone substrate (4-chlorophenyl)(pyridine-2-yl)ketone (CPMK) with a moderate R-selectivity of 82% ee. To modulate the stereoselectivity of KpADH, a "polarity scanning" strategy was proposed, in which six key residues inside and at the entrance of the substrate binding pocket were identified. After iterative combinatorial mutagenesis, variants Mu-R2 and Mu-S5 with enhanced (99.2% ee, R) and inverted (97.8% ee, S) stereoselectivity were obtained. The crystal structures of KpADH and two mutants in complex with NADPH were resolved to elucidate the evolution of enantioselective inversion. Based on MD simulation, Mu-R2-CPMKProR and Mu-S5-CPMKProS were more favorable in the formation of prereaction states. Interestingly, a quadrilateral plane formed by α-carbons of four residues (N136, V161, C237, and G214) was identified at the entrance of the substrate binding pocket of Mu-S5; this plane acts as a "polar gate" for substrates. Due to the discrepancy in charge characteristics between chlorophenyl and pyridine substituents, the pro- S orientation of CPMK is defined when it passes through the "polar gate" in Mu-S5, whereas the similar plane in wild-type is blocked by several aromatic residues. Our result paves the way for engineering stereocomplementary ADH toward bulky diaryl ketones and provides structural insight into the mechanism of stereoselective inversion.
Collapse
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ruizhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , 52074 Aachen , Germany
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| |
Collapse
|
26
|
Luirink RA, Dekker SJ, Capoferri L, Janssen LF, Kuiper CL, Ari ME, Vermeulen NP, Vos JC, Commandeur JN, Geerke DP. A combined computational and experimental study on selective flucloxacillin hydroxylation by cytochrome P450 BM3 variants. J Inorg Biochem 2018; 184:115-122. [DOI: 10.1016/j.jinorgbio.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
|
27
|
Hadi T, Dı́az-Rodrı́guez A, Khan D, Morrison JP, Kaplan JM, Gallagher KT, Schober M, Webb MR, Brown KK, Fuerst D, Snajdrova R, Roiban GD. Identification and Implementation of Biocatalytic Transformations in Route Discovery: Synthesis of Chiral 1,3-Substituted Cyclohexanone Building Blocks. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Timin Hadi
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Alba Dı́az-Rodrı́guez
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Diluar Khan
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - James P. Morrison
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Justin M. Kaplan
- API Chemistry, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Kathleen T. Gallagher
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Markus Schober
- Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Michael R. Webb
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Kristin K. Brown
- Molecular Design, Computational and Modeling Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Douglas Fuerst
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Radka Snajdrova
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Gheorghe-Doru Roiban
- Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
28
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
Saab-Rincón G, Alwaseem H, Guzmán-Luna V, Olvera L, Fasan R. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450 BM3 by Consensus-Guided Mutagenesis. Chembiochem 2018; 19:622-632. [PMID: 29276819 PMCID: PMC5941085 DOI: 10.1002/cbic.201700546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The multidomain, catalytically self-sufficient cytochrome P450 BM-3 from Bacillus megaterium (P450BM3 ) constitutes a versatile enzyme for the oxyfunctionalization of organic molecules and natural products. However, the limited stability of the diflavin reductase domain limits the utility of this enzyme for synthetic applications. In this work, a consensus-guided mutagenesis approach was applied to enhance the thermal stability of the reductase domain of P450BM3 . Upon phylogenetic analysis of a set of distantly related P450s (>38 % identity), a total of 14 amino acid substitutions were identified and evaluated in terms of their stabilizing effects relative to the wild-type reductase domain. Recombination of the six most stabilizing mutations generated two thermostable variants featuring up to tenfold longer half-lives at 50 °C and increased catalytic performance at elevated temperatures. Further characterization of the engineered P450BM3 variants indicated that the introduced mutations increased the thermal stability of the FAD-binding domain and that the optimal temperature (Topt ) of the enzyme had shifted from 25 to 40 °C. This work demonstrates the effectiveness of consensus mutagenesis for enhancing the stability of the reductase component of a multidomain P450. The stabilized P450BM3 variants developed here could potentially provide more robust scaffolds for the engineering of oxidation biocatalysts.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Valeria Guzmán-Luna
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Cuernavaca, Mor., México
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
30
|
Ilie A, Harms K, Reetz MT. P450-Catalyzed Regio- and Stereoselective Oxidative Hydroxylation of 6-Iodotetralone: Preparative-Scale Synthesis of a Key Intermediate for Pd-Catalyzed Transformations. J Org Chem 2018; 83:7504-7508. [DOI: 10.1021/acs.joc.7b02878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adriana Ilie
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Klaus Harms
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| |
Collapse
|
31
|
Abstract
The last decade has seen a dramatic increase in the utilization of enzymes as green and sustainable (bio)catalysts in pharmaceutical and industrial applications. This trend has to a significant degree been fueled by advances in scientists' and engineers' ability to customize native enzymes by protein engineering. A review of the literature quickly reveals the tremendous success of this approach; protein engineering has generated enzyme variants with improved catalytic activity, broadened or altered substrate specificity, as well as raised or reversed stereoselectivity. Enzymes have been tailored to retain activity at elevated temperatures and to function in the presence of organic solvents, salts and pH values far from physiological conditions. However, readers unfamiliar with the field will soon encounter the confusingly large number of experimental techniques that have been employed to accomplish these engineering feats. Herein, we use history to guide a brief overview of the major strategies for protein engineering-past, present, and future.
Collapse
Affiliation(s)
- Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| | - Samantha M Iamurri
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
32
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
33
|
Agudo R, Calvo PA, Martínez-Jiménez MI, Blanco L. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase. Nucleic Acids Res 2017; 45:9046-9058. [PMID: 28911121 PMCID: PMC5587808 DOI: 10.1093/nar/gkx633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| | - Patricia A. Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| |
Collapse
|
34
|
You C, Huang R, Wei X, Zhu Z, Zhang YHP. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth Syst Biotechnol 2017; 2:208-218. [PMID: 29318201 PMCID: PMC5655348 DOI: 10.1016/j.synbio.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
Two natural nicotinamide-based coenzymes (NAD and NADP) are indispensably required by the vast majority of oxidoreductases for catabolism and anabolism, respectively. Most NAD(P)-dependent oxidoreductases prefer one coenzyme as an electron acceptor or donor to the other depending on their different metabolic roles. This coenzyme preference associated with coenzyme imbalance presents some challenges for the construction of high-efficiency in vivo and in vitro synthetic biology pathways. Changing the coenzyme preference of NAD(P)-dependent oxidoreductases is an important area of protein engineering, which is closely related to product-oriented synthetic biology projects. This review focuses on the methodology of nicotinamide-based coenzyme engineering, with its application in improving product yields and decreasing production costs. Biomimetic nicotinamide-containing coenzymes have been proposed to replace natural coenzymes because they are more stable and less costly than natural coenzymes. Recent advances in the switching of coenzyme preference from natural to biomimetic coenzymes are also covered in this review. Engineering coenzyme preferences from natural to biomimetic coenzymes has become an important direction for coenzyme engineering, especially for in vitro synthetic pathways and in vivo bioorthogonal redox pathways.
Collapse
Affiliation(s)
- Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
35
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
36
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew Chem Int Ed Engl 2017; 56:8942-8973. [DOI: 10.1002/anie.201612462] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
37
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselektive Chemo- und Biokatalyse: Partner in der Retrosynthese. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612462] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
38
|
Xiong S, Wang Y, Yao M, Liu H, Zhou X, Xiao W, Yuan Y. Cell foundry with high product specificity and catalytic activity for 21-deoxycortisol biotransformation. Microb Cell Fact 2017; 16:105. [PMID: 28610588 PMCID: PMC5470312 DOI: 10.1186/s12934-017-0720-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background 21-deoxycortisol (21-DF) is the key intermediate to manufacture pharmaceutical glucocorticoids. Recently, a Japan patent has realized 21-DF production via biotransformation of 17-hydroxyprogesterone (17-OHP) by purified steroid 11β-hydroxylase CYP11B1. Due to the less costs on enzyme isolation, purification and stabilization as well as cofactors supply, whole-cell should be preferentially employed as the biocatalyst over purified enzymes. No reports as so far have demonstrated a whole-cell system to produce 21-DF. Therefore, this study aimed to establish a whole-cell biocatalyst to achieve 21-DF transformation with high catalytic activity and product specificity. Results In this study, Escherichia coli MG1655(DE3), which exhibited the highest substrate transportation rate among other tested chassises, was employed as the host cell to construct our biocatalyst by co-expressing heterologous CYP11B1 together with bovine adrenodoxin and adrenodoxin reductase. Through screening CYP11B1s (with mutagenesis at N-terminus) from nine sources, Homo sapiens CYP11B1 mutant (G25R/G46R/L52 M) achieved the highest 21-DF transformation rate at 10.6 mg/L/h. Furthermore, an optimal substrate concentration of 2.4 g/L and a corresponding transformation rate of 16.2 mg/L/h were obtained by screening substrate concentrations. To be noted, based on structural analysis of the enzyme-substrate complex, two types of site-directed mutations were designed to adjust the relative position between the catalytic active site heme and the substrate. Accordingly, 1.96-fold enhancement on 21-DF transformation rate (to 47.9 mg/L/h) and 2.78-fold improvement on product/by-product ratio (from 0.36 to 1.36) were achieved by the combined mutagenesis of F381A/L382S/I488L. Eventually, after 38-h biotransformation in shake-flask, the production of 21-DF reached to 1.42 g/L with a yield of 52.7%, which is the highest 21-DF production as known. Conclusions Heterologous CYP11B1 was manipulated to construct E. coli biocatalyst converting 17-OHP to 21-DF. Through the strategies in terms of (1) screening enzymes (with N-terminal mutagenesis) sources, (2) optimizing substrate concentration, and most importantly (3) rational design novel mutants aided by structural analysis, the 21-DF transformation rate was stepwise improved by 19.5-fold along with 4.67-fold increase on the product/byproduct ratio. Eventually, the highest 21-DF reported production was achieved in shake-flask after 38-h biotransformation. This study highlighted above described methods to obtain a high efficient and specific biocatalyst for the desired biotransformation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0720-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuting Xiong
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
39
|
Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 2017; 26:1241-1251. [PMID: 28693917 DOI: 10.1016/j.bmc.2017.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Collapse
|
40
|
Wang JB, Ilie A, Reetz MT. Chemo- and Stereoselective Cytochrome P450-BM3-Catalyzed Sulfoxidation of 1-Thiochroman-4-ones Enabled by Directed Evolution. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jian-bo Wang
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
- Fachbereich Chemie, Philipps-Universität; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
- Fachbereich Chemie, Philipps-Universität; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr Germany
- Fachbereich Chemie, Philipps-Universität; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
41
|
Belsare KD, Andorfer MC, Cardenas FS, Chael JR, Park HJ, Lewis JC. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering. ACS Synth Biol 2017; 6:416-420. [PMID: 28033708 DOI: 10.1021/acssynbio.6b00297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450BM3, pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.
Collapse
Affiliation(s)
- Ketaki D. Belsare
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mary C. Andorfer
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Frida S. Cardenas
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Julia R. Chael
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Hyun June Park
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jared C. Lewis
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
Holec C, Hartrampf U, Neufeld K, Pietruszka J. P450 BM3-Catalyzed Regio- and Stereoselective Hydroxylation Aiming at the Synthesis of Phthalides and Isocoumarins. Chembiochem 2017; 18:676-684. [PMID: 28107587 DOI: 10.1002/cbic.201600685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 BM3 monooxygenases are able to catalyze the regio- and stereoselective oxygenation of a broad range of substrates, with promising potential for synthetic applications. To study the suitability of P450 BM3 variants for stereoselective benzylic hydroxylation of 2-alkylated benzoic acid esters, the biotransformation of methyl 2-ethylbenzoate, resulting in both enantiomeric forms of 3-methylphthalide, was investigated. In the case of methyl 2-propylbenzoate as a substrate the regioselectivity of the reaction was shifted towards β-hydroxylation, resulting in the synthesis of enantioenriched R- and S-configured 3-methylisochroman-1-one. The potential of P450 BM3 variants for regio- and stereoselective synthesis of phthalides and isocoumarins offers a new route to a class of compounds that are valuable synthons for a variety of natural compounds.
Collapse
Affiliation(s)
- Claudia Holec
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany
| | - Ute Hartrampf
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Katharina Neufeld
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany.,Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, 52426, Jülich, Germany
| |
Collapse
|
43
|
O'Hanlon JA, Ren X, Morris M, Wong LL, Robertson J. Hydroxylation of anilides by engineered cytochrome P450BM3. Org Biomol Chem 2017; 15:8780-8787. [DOI: 10.1039/c7ob02236k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytochrome P450BM3mutants achieve selectivepara-hydroxylation of substitutedN-sulfonylanilines under mild conditions.
Collapse
Affiliation(s)
- Jack A. O'Hanlon
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| | - Xinkun Ren
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Melloney Morris
- Syngenta UK
- Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Luet Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Jeremy Robertson
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| |
Collapse
|
44
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
45
|
Wang S, Liu Z. Oxygenation cascade analysis in conversion ofn-octane catalyzed by cytochrome P450 CYP102A3 mutants at the P331 site. Biotechnol Appl Biochem 2016; 64:14-19. [DOI: 10.1002/bab.1472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Songhe Wang
- Institute of Chemical and Engineering Sciences; Jurong Island 627833 Singapore
| | - Zhibin Liu
- Institute of Chemical and Engineering Sciences; Jurong Island 627833 Singapore
| |
Collapse
|
46
|
Eichler A, Gricman Ł, Herter S, Kelly PP, Turner NJ, Pleiss J, Flitsch SL. Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling. Chembiochem 2016; 17:426-32. [DOI: 10.1002/cbic.201500536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Anja Eichler
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Łukasz Gricman
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Susanne Herter
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Paul P. Kelly
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jürgen Pleiss
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sabine L. Flitsch
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
47
|
Shoji O, Fujishiro T, Nishio K, Kano Y, Kimoto H, Chien SC, Onoda H, Muramatsu A, Tanaka S, Hori A, Sugimoto H, Shiro Y, Watanabe Y. A substrate-binding-state mimic of H2O2-dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00630b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
H2O2-dependent cytochrome P450s that can catalyze monooxygenation of nonnative substrates were constructed by one-point mutagenesis.
Collapse
|
48
|
Reinen J, Vredenburg G, Klaering K, Vermeulen NP, Commandeur JN, Honing M, Vos JC. Selective whole-cell biosynthesis of the designer drug metabolites 15- or 16-betahydroxynorethisterone by engineered Cytochrome P450 BM3 mutants. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Acevedo-Rocha CG, Reetz MT, Nov Y. Economical analysis of saturation mutagenesis experiments. Sci Rep 2015; 5:10654. [PMID: 26190439 PMCID: PMC4507136 DOI: 10.1038/srep10654] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany [3] Prokaryotic Small RNA Biology Group, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany [4] Landes-Offensive zur Entwicklung Wissenschafltich-ökonomischer Exzellenz (LOEWE) Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35032, Germany
| | - Manfred T Reetz
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa, 31905, Israel
| |
Collapse
|
50
|
Narayan ARH, Jiménez-Osés G, Liu P, Negretti S, Zhao W, Gilbert MM, Ramabhadran RO, Yang YF, Furan LR, Li Z, Podust LM, Montgomery J, Houk KN, Sherman DH. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations. Nat Chem 2015. [PMID: 26201742 DOI: 10.1038/nchem.2285] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.
Collapse
Affiliation(s)
- Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Gonzalo Jiménez-Osés
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - Peng Liu
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - Solymar Negretti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wanxiang Zhao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Michael M Gilbert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Yun-Fang Yang
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - Lawrence R Furan
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - Zhe Li
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - Larissa M Podust
- Skaggs School of Pharmacy &Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - John Montgomery
- 1] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - K N Houk
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | - David H Sherman
- 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [4] Department of Microbiology &Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|