1
|
Płoska A, Radulska A, Siekierzycka A, Cieślik P, Santocki M, Dobrucki IT, Kalinowski L, Wierońska JM. The impact of mGlu2 or mGlu5 receptor activators on the production of l-arginine derivatives and the expression of PRMT5 or DDAH1 enzymes in animal models of cognitive decline. Nitric Oxide 2025; 154:140-151. [PMID: 39638030 DOI: 10.1016/j.niox.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
l-arginine derivatives (ADMA, SDMA, NMMA) are endogenous inhibitors of nitric oxide (NO֗) production, which is essential in critical brain processes including blood-brain barrier (BBB) integrity and long-term potentiation (LTP). ADMA and NMMA are degraded by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and protein arginine methyltransferase 5 (PRMT5) is an emerging epigenetic enzyme that mainly represses transcription of target genes via symmetric dimethylation of arginine residues. There is no data concerning the impact of metabotropic glutamate receptors (mGlu) ligands on this aspect of brain physiology. In the present studies the impact of positive allosteric modulators (PAM) of mGlu5 (CDPPB) and mGlu2 (LY487379) receptors on l-arginine derivatives, DDAH1 and PRMT5 expression in mouse models of cognitive dysfunction induced with MK-801(0.3 mg/kg) or scopolamine (1 mg/kg), was investigated. Experiments were performed both after acute and chronic (14 days) administration of the compounds, which were administered at the doses 0.1-5 mg/kg (CDBBB) and 0.1-1 mg/kg (LY487379). The chronic administration of both compounds normalized the level of l-arginine derivatives in MK-801 model (in brain and plasma) and only low dose of CDPPB prevented scopolamine-induced changes. The expression of DDAH1 and PRMT5 was modulated by CDPPB and LY487379, both in MK-801 and scopolamine models. In the novel object recognition (NOR) test low doses of the compounds, inactive after single administration, prevented cognitive decline after chronic injections. Our findings highlight the potential of mGlu receptor modulators in treating schizophrenia and possibly dementia by normalizing l-arginine derivatives production, preventing from nitric oxide synthases uncoupling.
Collapse
Affiliation(s)
- Agata Płoska
- Department of Medical Laboratory Diagnostics- Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics- Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics- Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Michał Santocki
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA; Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics- Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland; BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Steet, 80-223 Gdansk, Poland.
| | - Joanna M Wierońska
- Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
2
|
Prosekina EA, Shapkina VA, Karpov AE, Fedorutseva EY, Artemyeva AS. [DDAH1 protein: biological functions, role in carcinogenesis processes]. Arkh Patol 2025; 87:60-67. [PMID: 39943731 DOI: 10.17116/patol20258701160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) is an essential enzyme capable of degrading asymmetric dimethylarginine, which is an endogenous inhibitor of nitric oxide synthase. Increased expression of DDAH1 and subsequent increased NO production are associated with carcinogenesis. In particular, DDAH1 is involved in the creation of a vascular network by tumor cells, vasculogenic mimicry, which is closely associated with tumor progression and poor patient prognosis. This is the reason why DDAH1 may be a potential therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- E A Prosekina
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - V A Shapkina
- St. Petersburg State University, St. Petersburg, Russia
| | - A E Karpov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | | | - A S Artemyeva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| |
Collapse
|
3
|
Nair PC, Mangoni AA, Rodionov RN. Redefining the biological and pathophysiological role of dimethylarginine dimethylaminohydrolase 2. Trends Mol Med 2024; 30:552-561. [PMID: 38553332 DOI: 10.1016/j.molmed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) 1 metabolizes asymmetric dimethylarginine (ADMA), a critical endogenous cardiovascular risk factor. In the past two decades, there has been significant controversy about whether DDAH2, the other DDAH isoform, is also able to directly metabolize ADMA. There has been evidence that DDAH2 regulates several critical processes involved in cardiovascular and immune homeostasis. However, the molecular mechanisms underpinning these effects are unclear. In this opinion, we discuss the previous and current knowledge of ADMA metabolism by DDAH in light of a recent consortium study, which convincingly demonstrated that DDAH2 is not capable of metabolizing ADMA, unlike DDAH1. Thus, further research in this field is needed to uncover the molecular mechanisms of DDAH2 and its role in various disorders.
Collapse
Affiliation(s)
- Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA, Australia
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Ragavan VN, Nair PC, Jarzebska N, Angom RS, Ruta L, Bianconi E, Grottelli S, Tararova ND, Ryazanskiy D, Lentz SR, Tommasi S, Martens-Lobenhoffer J, Suzuki-Yamamoto T, Kimoto M, Rubets E, Chau S, Chen Y, Hu X, Bernhardt N, Spieth PM, Weiss N, Bornstein SR, Mukhopadhyay D, Bode-Böger SM, Maas R, Wang Y, Macchiarulo A, Mangoni AA, Cellini B, Rodionov RN. A multicentric consortium study demonstrates that dimethylarginine dimethylaminohydrolase 2 is not a dimethylarginine dimethylaminohydrolase. Nat Commun 2023; 14:3392. [PMID: 37296100 PMCID: PMC10256801 DOI: 10.1038/s41467-023-38467-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.
Collapse
Affiliation(s)
- Vinitha N Ragavan
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Natalia Jarzebska
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Luana Ruta
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, P.le L. Sevari 1, Perugia, Italy
| | | | | | - Steven R Lentz
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara Tommasi
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Elena Rubets
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sarah Chau
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, NY, USA
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Beijing University, Beijing, China
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter M Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Norbert Weiss
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto von Guericke University, Magdeburg, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU New - Research Center for New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, NY, USA
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, Perugia, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Sevari 1, Perugia, Italy
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
- College of Medicine and Public Health, Flinders University and Flinders Medical Center, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Kaneko YK, Morioka A, Sano M, Tashiro M, Watanabe N, Kasahara N, Nojiri M, Ishiwatari C, Ichinose K, Minami A, Suzuki T, Yamaguchi M, Kimura T, Ishikawa T. Asymmetric dimethylarginine accumulation under hyperglycemia facilitates β-cell apoptosis via inhibiting nitric oxide production. Biochem Biophys Res Commun 2022; 637:108-116. [DOI: 10.1016/j.bbrc.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
6
|
Kozlova AA, Ragavan VN, Jarzebska N, Lukianova IV, Bikmurzina AE, Rubets E, Suzuki-Yamamoto T, Kimoto M, Mangoni AA, Gainetdinov RR, Weiss N, Bauer M, Markov AG, Rodionov RN, Bernhardt N. Divergent Dimethylarginine Dimethylaminohydrolase Isoenzyme Expression in the Central Nervous System. Cell Mol Neurobiol 2022; 42:2273-2288. [PMID: 34014421 PMCID: PMC9418281 DOI: 10.1007/s10571-021-01101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/09/2021] [Indexed: 11/20/2022]
Abstract
The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Vinitha N Ragavan
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Natalia Jarzebska
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cart Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Iana V Lukianova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anastasia E Bikmurzina
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Elena Rubets
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Norbert Weiss
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander G Markov
- Department of General Physiology, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Roman N Rodionov
- University Centre for Vascular Medicine and Department of Internal Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Mangoni AA, Ceruti T, Frapolli R, Russo M, Fichera S, Zucchetti M, Tommasi S. Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method. Molecules 2022; 27:molecules27031017. [PMID: 35164277 PMCID: PMC8840040 DOI: 10.3390/molecules27031017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%–22.2% and 2.3%–7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8204-7495
| | - Tommaso Ceruti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (T.C.); (R.F.); (S.F.); (M.Z.)
| | - Roberta Frapolli
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (T.C.); (R.F.); (S.F.); (M.Z.)
| | - Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Stefania Fichera
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (T.C.); (R.F.); (S.F.); (M.Z.)
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (T.C.); (R.F.); (S.F.); (M.Z.)
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia;
| |
Collapse
|
8
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Kuang DB, Zhou JP, Yu LY, Zeng WJ, Xiao J, Zhu GZ, Zhang ZL, Chen XP. DDAH1-V3 transcript might act as miR-21 sponge to maintain balance of DDAH1-V1 in cultured HUVECs. Nitric Oxide 2016; 60:59-68. [DOI: 10.1016/j.niox.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/11/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
|
10
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
11
|
Lai L, Ghebremariam YT. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers. J Diabetes Res 2015; 2016:1982096. [PMID: 26770984 PMCID: PMC4684877 DOI: 10.1155/2016/1982096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022] Open
Abstract
Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers.
Collapse
Affiliation(s)
- Li Lai
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Yohannes T. Ghebremariam
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
12
|
Tommasi S, Zanato C, Lewis BC, Nair PC, Dall'Angelo S, Zanda M, Mangoni AA. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1. Org Biomol Chem 2015; 13:11315-30. [DOI: 10.1039/c5ob01843a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arginine analogues incorporating carboxylate bioisosteric functional groups exhibit low micromolar inhibitory potential against human dimethylarginine dimethylaminohydrolase (DDAH), a key enzyme in the nitric oxide pathway.
Collapse
Affiliation(s)
- Sara Tommasi
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Chiara Zanato
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Benjamin C. Lewis
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| | - Sergio Dall'Angelo
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics
- Institute of Medical Sciences
- School of Medical Sciences
- University of Aberdeen
- Aberdeen AB25 2ZD
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology
- School of Medicine
- Flinders University and Flinders Medical Centre
- Australia
| |
Collapse
|