1
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Das J, Kedei N, Kelsey JS, You Y, Pany S, Mitchell GA, Lewin NE, Blumberg PM. Critical Role of Trp-588 of Presynaptic Munc13-1 for Ligand Binding and Membrane Translocation. Biochemistry 2018; 57:732-741. [PMID: 29244485 DOI: 10.1021/acs.biochem.7b00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and presynaptic plasticity in the brain. This multidomain scaffold protein contains a C1 domain that binds to the activator diacylglycerol/phorbol ester. Although the C1 domain bears close structural homology with the C1 domains of protein kinase C (PKC), the tryptophan residue at position 22 (588 in the full-length Munc13-1) occludes the activator binding pocket, which is not the case for PKC. To elucidate the role of this tryptophan, we generated W22A, W22K, W22D, W22Y, and W22F substitutions in the full-length Munc13-1, expressed the GFP-tagged constructs in Neuro-2a cells, and measured their membrane translocation in response to phorbol ester treatment by imaging of the live cells using confocal microscopy. The extent of membrane translocation followed the order, wild-type > W22K > W22F > W22Y > W22A > W22D. The phorbol ester binding affinity of the wild-type Munc13-1C1 domain and its mutants was phosphatidylserine (PS)-dependent following the order, wild-type > W22K > W22A ≫ W22D in both 20% and 100% PS. Phorbol ester affinity was higher for Munc13-1 than the C1 domain. While Munc13-1 translocated to the plasma membrane, the C1 domain translocated to internal membranes in response to phorbol ester. Molecular dynamics (80 ns) studies reveal that Trp-22 is relatively less flexible than the homologous Trp-22 of PKCδ and PKCθ. Results are discussed in terms of the overall negative charge state of the Munc13-1C1 domain and its possible interaction with the PS-rich plasma membrane. This study shows that Trp-588 is an important structural element for ligand binding and membrane translocation in Munc13-1.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Noemi Kedei
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Jessica S Kelsey
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Gary A Mitchell
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Nancy E Lewin
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Peter M Blumberg
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Czikora A, Lundberg DJ, Abramovitz A, Lewin NE, Kedei N, Peach ML, Zhou X, Merritt RC, Craft EA, Braun DC, Blumberg PM. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. J Biol Chem 2016; 291:11133-47. [PMID: 27022025 PMCID: PMC4900263 DOI: 10.1074/jbc.m116.725333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation.
Collapse
Affiliation(s)
- Agnes Czikora
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel J Lundberg
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Adelle Abramovitz
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nancy E Lewin
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Noemi Kedei
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Xiaoling Zhou
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Raymond C Merritt
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Elizabeth A Craft
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Derek C Braun
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Peter M Blumberg
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
4
|
De Felice B, Guida M, Boccia L, Nacca M. Ingenol mebutate treatment in keloids. BMC Res Notes 2015; 8:466. [PMID: 26391582 PMCID: PMC4578559 DOI: 10.1186/s13104-015-1429-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ingenol-mebutate has been used for the treatment of actinic keratosis. It has been shown that ingenol-mebutate inhibits the growth of cancer cells or induces tumor cell death through pro-apoptotic effects. Keloids are benign skin tumours and are the effect of a deregulated wound-healing process in genetically predisposed patients. Increased cell proliferation, which accounts for the progressive and hypertrophic nature of keloids, correlates with the failure of apoptosis and plays a role in the process of pathological scarring. Keloid cells show a mutated p53 gene resulting in functionally inactive p53 protein which cannot control genomic integrity. They tend to escape from apoptosis which leads to keloid development by means of accumulation of continuously proliferating cells. Currently, the treatment of keloids remains a challenge for high recurrence rates. However, the design and the development of pro-apoptotic therapeutic strategies would be beneficial to keloids treatment. CASE PRESENTATION A 55-year-old caucasian woman presented recurrent keloids on a presternal scar. Standard surgical intervention was used to treat the scar. However, this was unsuccessful and a year later the patient sought treatment again, but only by alternative means as the patient refused further surgical intervention. Consequently, based on past research and experience, the authors attempted to treat these lesions with ingenol mebutate gel, due to the pro-apoptotic effects. CONCLUSION After 1 month, there was a clinical resolution of lesions, with a slightly squamous, post-inflammatory erythema. A cutaneous biopsy proved the absence of residual keloids and deregulated expression of molecular markers. The last follow-up of the patient, 1 year after treatment, showed that the patient was still free of keloids recurrence.
Collapse
Affiliation(s)
- Bruna De Felice
- DISTABIF-Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Naples II, Via Vivaldi 43, 81100, Caserta, Italy.
| | - Marco Guida
- Faculty of Biology, Federico II University of Naples, Naples, Italy.
| | - Luigi Boccia
- A.O.R.N. Sant'Anna e San Sebastiano Caserta, 81100, Caserta, Italy.
| | - Massimo Nacca
- A.O.R.N. Sant'Anna e San Sebastiano Caserta, 81100, Caserta, Italy.
| |
Collapse
|
5
|
Loy BA, Lesser AB, Staveness D, Billingsley KL, Cegelski L, Wender PA. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy. J Am Chem Soc 2015; 137:3678-85. [PMID: 25710634 DOI: 10.1021/jacs.5b00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) modulators are currently of great importance in preclinical and clinical studies directed at cancer, immunotherapy, HIV eradication, and Alzheimer's disease. However, the bound conformation of PKC modulators in a membrane environment is not known. Rotational echo double resonance (REDOR) NMR spectroscopy could uniquely address this challenge. However, REDOR NMR requires strategically labeled, high affinity ligands to determine interlabel distances from which the conformation of the bound ligand in the PKC-ligand complex could be identified. Here we report the first computer-guided design and syntheses of three bryostatin analogues strategically labeled for REDOR NMR analysis. Extensive computer analyses of energetically accessible analogue conformations suggested preferred labeling sites for the identification of the PKC-bound conformers. Significantly, three labeled analogues were synthesized, and, as required for REDOR analysis, all proved highly potent with PKC affinities (∼1 nM) on par with bryostatin. These potent and strategically labeled bryostatin analogues are new structural leads and provide the necessary starting point for projected efforts to determine the PKC-bound conformation of such analogues in a membrane environment, as needed to design new PKC modulators and understand PKC-ligand-membrane structure and dynamics.
Collapse
Affiliation(s)
- Brian A Loy
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Adam B Lesser
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Daryl Staveness
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Kelvin L Billingsley
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- †Department of Chemistry and ‡Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|