1
|
Abboud SA, Kodadek T. 2-Pyridone Formation: An Efficient Method for the Solid-Phase Synthesis of Homodimers. Chemistry 2024; 30:e202302937. [PMID: 37939246 PMCID: PMC10843674 DOI: 10.1002/chem.202302937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.
Collapse
Affiliation(s)
- Skander A Abboud
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Martinez JC, Ruiz-Sanz J, Resina MJ, Montero F, Camara-Artigas A, Luque I. A calorimetric and structural analysis of cooperativity in the thermal unfolding of the PDZ tandem of human Syntenin-1. Int J Biol Macromol 2023; 242:124662. [PMID: 37119899 DOI: 10.1016/j.ijbiomac.2023.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Syntenin-1 is a multidomain protein containing a central tandem of two PDZ domains flanked by two unnamed domains. Previous structural and biophysical studies show that the two PDZ domains are functional both isolated and in tandem, occurring a gain in their respective binding affinities when joined through its natural short linker. To get insight into the molecular and energetic reasons of such a gain, here, the first thermodynamic characterization of the conformational equilibrium of Syntenin-1 is presented, with special focus on its PDZ domains. These studies include the thermal unfolding of the whole protein, the PDZ-tandem construct and the two isolated PDZ domains using circular dichroism, differential scanning fluorimetry and differential scanning calorimetry. The isolated PDZ domains show low stability (ΔG < 10 kJ·mol-1) and poor cooperativity compared to the PDZ-tandem, which shows higher stability (20-30 kJ·mol-1) and a fully cooperative behaviour, with energetics similar to that previously described for archetypical PDZ domains. The high-resolution structures suggest that this remarkable increase in cooperativity is associated to strong, water-mediated, interactions at the interface between the PDZ domains, associated to nine conserved hydration regions. The low Tm value (45 °C), the anomalously high unfolding enthalpy (>400 kJ·mol-1), and native heat capacity values (above 40 kJ·K-1·mol-1), indicate that these interfacial buried waters play a relevant role in Syntenin-1 folding energetics.
Collapse
Affiliation(s)
- Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - María J Resina
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| |
Collapse
|
3
|
Horn A, Dussault PH. A click-based modular approach to introduction of peroxides onto molecules and nanostructures. RSC Adv 2020; 10:44408-44429. [PMID: 35517136 PMCID: PMC9058499 DOI: 10.1039/d0ra09088c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Copper-promoted azide/alkyne cycloadditions (CuAAC) are explored as a tool for modular introduction of peroxides onto molecules and nanomaterials.
Collapse
Affiliation(s)
- Alissa Horn
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
| | | |
Collapse
|
4
|
Linker Dependence of Avidity in Multivalent Interactions Between Disordered Proteins. J Mol Biol 2019; 431:4784-4795. [DOI: 10.1016/j.jmb.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
|
5
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
6
|
Singh H, Li W, Kazemian MR, Yang R, Yang C, Logsetty S, Liu S. Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS APPLIED BIO MATERIALS 2019; 2:2028-2036. [DOI: 10.1021/acsabm.9b00076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hardev Singh
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba
| | - Wei Li
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba
| | - Mohammad Reza Kazemian
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba
| | - Runqiang Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sarvesh Logsetty
- Department of Surgery and Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Song Liu
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
7
|
Yu Y, Li S, Wang K, Wan X. A PDZ Protein MDA-9/Syntenin: As a Target for Cancer Therapy. Comput Struct Biotechnol J 2019; 17:136-141. [PMID: 30766662 PMCID: PMC6360254 DOI: 10.1016/j.csbj.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9)/Syntenin is a multidomain PDZ protein and identified as a key oncogene in melanoma initially. This protein contains a unique tandem PDZ domain architecture (PDZ1 and PDZ2 spaced by a 4-amino acid linker), an N-terminal domain (NTD) that is structurally uncharacterized and a short C-terminal domain (CTD). The PDZ1 domain is regarded as the PDZ signaling domain while PDZ2 served as the PDZ superfamily domain. It has various cellular roles by regulating many of major signaling pathways in numerous cancertypes. Through the use of novel drug design methods, such as dimerization and unnatural amino acid substitution of inhibitors in our group, the protein may provide a valuable therapeutic target. The objective of this review is to provide a current perspective on the cancer-specific role of MDA-9/Syntenin in order to explore its potential for cancer drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
8
|
Möhler JS, Werther P, Wombacher R. Proximity-Induced Bioorthogonal Chemistry Using Inverse Electron Demand Diels-Alder Reaction. Methods Mol Biol 2019; 2008:147-163. [PMID: 31124095 DOI: 10.1007/978-1-4939-9537-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioorthogonal chemistry techniques enable the selective and targeted manipulation of living systems. In order to yield universally applicable techniques, it is of great importance for bioorthogonal reactions to take place rapidly, selectively, and with the formation of only benign side products. One of the reactions that match these criteria well is the inverse electron demand Diels-Alder reaction (DAinv) between tetrazines and strained dienophiles. However, even this prime technique comes with the disadvantage of its reactants having limited stability under physiological conditions. In our protocol, an unreactive and therefore stable DAinv diene/dienophile pair reacts rapidly using DNA hybridization as secondary rate-accelerating process. Due to the fluorogenicity of the presented tetrazine rhodamine conjugate, this method enables the selective screening and evaluation of reactant pairs for proximity-mediated bioorthogonal chemistry.
Collapse
Affiliation(s)
- Jasper S Möhler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
- Laboratory of Organic Chemistry, ETH Zürich, Zurich, Switzerland
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Liu J, Qu J, Zhou W, Huang Y, Jia L, Huang X, Qian Z, Xia J, Yu Y. Syntenin-targeted peptide blocker inhibits progression of cancer cells. Eur J Med Chem 2018; 154:354-366. [DOI: 10.1016/j.ejmech.2018.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/12/2023]
|
10
|
Werther P, Möhler JS, Wombacher R. A Bifunctional Fluorogenic Rhodamine Probe for Proximity-Induced Bioorthogonal Chemistry. Chemistry 2017; 23:18216-18224. [DOI: 10.1002/chem.201703607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Jasper S. Möhler
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
11
|
Zhu J, Shang Y, Zhang M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 2016; 17:209-23. [DOI: 10.1038/nrn.2016.18] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Toto A, Pedersen SW, Karlsson OA, Moran GE, Andersson E, Chi CN, Strømgaard K, Gianni S, Jemth P. Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Eng Des Sel 2016; 29:169-75. [PMID: 26941280 DOI: 10.1093/protein/gzw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain.
Collapse
Affiliation(s)
- Angelo Toto
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Griffin E Moran
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| |
Collapse
|
13
|
Nissen KB, Haugaard-Kedström LM, Wilbek TS, Nielsen LS, Åberg E, Kristensen AS, Bach A, Jemth P, Strømgaard K. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family. PLoS One 2015; 10:e0117668. [PMID: 25658767 PMCID: PMC4319893 DOI: 10.1371/journal.pone.0117668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/29/2014] [Indexed: 12/02/2022] Open
Abstract
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.
Collapse
Affiliation(s)
- Klaus B. Nissen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Linda M. Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Theis S. Wilbek
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Line S. Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders S. Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|