1
|
Kalantar M, Hilpert GA, Mosca ER, Raeeszadeh-Sarmazdeh M. Engineering metalloproteinase inhibitors: tissue inhibitors of metalloproteinases or antibodies, that is the question. Curr Opin Biotechnol 2024; 86:103094. [PMID: 38430575 DOI: 10.1016/j.copbio.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/04/2024]
Abstract
Targeting metalloproteinases (MPs) has been the center of attention for developing therapeutics due to their contribution to a wide range of diseases, including cancer, cardiovascular, neurodegenerative disease, and preterm labor. Protein-based MP inhibitors offer higher stability and selectivity, which is critical for developing efficient therapeutics with low off-target effects. Tissue inhibitors of metalloproteinases (TIMPs), natural inhibitors of MPs, and antibodies provide excellent protein scaffolds for engineering selective or multispecific MP inhibitors. Advances in protein engineering and design techniques, such as rational design and directed evolution using yeast display to develop potent MP inhibitors, are discussed, including but not limited to loop grafting, swapping, and counterselective selection.
Collapse
Affiliation(s)
- Masoud Kalantar
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Gregory A Hilpert
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | - Ethan R Mosca
- Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
2
|
Liang P, Li Y, Xu R, Nandakumar KS, Stawikowska R, Fields GB, Holmdahl R. Characterization of chronic relapsing antibody mediated arthritis in mice with a mutation in Ncf1 causing reduced oxidative burst. MOLECULAR BIOMEDICINE 2022; 3:14. [PMID: 35551534 PMCID: PMC9098740 DOI: 10.1186/s43556-022-00076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder affecting joints with a hallmark of autoantibody production. Mannan-enhanced collagen type II (COL2) antibody induced arthritis (mCAIA) in neutrophil cytosolic factor 1(Ncf1) mutation mouse is a chronic disease model imitating RA in mice. In this study, we characterize the chronic phase of mCAIA in Ncf1 mutated (BQ.Ncf1m1j/m1j) mice. Arthritis was induced by an intravenous injection of anti-COL2 monoclonal antibodies on day 0 followed by intra-peritoneal injections of mannan (from Saccharomyces cerevisiae) on days 3 and 65 in BQ.Ncf1m1j/m1j and BQ mice. Bone erosion was analysed by computed tomography (CT) and blood cell phenotypes by flow cytometry. Cytokines and anti-COL2 antibodies were analyzed with multiplex bead-based assays. The arthritis in the Ncf1m1j/m1j mice developed with a chronic and relapsing disease course, which was followed for 200 days and bone erosions of articular joints were evaluated. An increased number of circulating CD11b+ Ly6G+ neutrophils were observed during the chronic phase, together with a higher level of G-CSF (granulocyte colony-stimulating factor) and TNF-α. In conclusion, the chronic relapsing arthritis of mCAIA in the Ncf1m1j/m1j mice develop bone erosions associated with a sustained neutrophil type of inflammatory responses.
Collapse
Affiliation(s)
- Peibin Liang
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Yanpeng Li
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Rui Xu
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China
| | - Roma Stawikowska
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, FL, USA
| | - Rikard Holmdahl
- Medical Inflammation Research, Pharmacology School, Southern Medical University, Guangzhou, 510515, China. .,Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden.
| |
Collapse
|
3
|
Onwuha‐Ekpete L, Fields GB. Application of a triple‐helical peptide inhibitor of
MMP
‐2/
MMP
‐9 to examine T‐cell activation in experimental autoimmune encephalomyelitis. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lillian Onwuha‐Ekpete
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
| | - Gregg B. Fields
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
- Department of Chemistry The Scripps Research Institute/Scripps Florida Jupiter Florida USA
| |
Collapse
|
4
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
5
|
Viljanen J, Lönnblom E, Ge C, Yang J, Cheng L, Aldi S, Cai W, Kastbom A, Sjöwall C, Gjertsson I, Holmdahl R, Kihlberg J. Synthesis of an Array of Triple-Helical Peptides from Type II Collagen for Multiplex Analysis of Autoantibodies in Rheumatoid Arthritis. ACS Chem Biol 2020; 15:2605-2615. [PMID: 32909734 DOI: 10.1021/acschembio.0c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type II collagen (CII) is the most abundant protein in joint cartilage. Antibodies to CII appear around the clinical onset of the autoimmune disease rheumatoid arthritis (RA) in a subset of patients. They target specific epitopes on CII and can be pathogenic or protective. Assays for early detection of such autoantibodies may provide new opportunities for selecting effective treatment strategies of RA. We report the efficient and reproducible assembly of an array of covalently branched native and citrullinated triple helical peptides (THPs) from CII that contain defined autoantibody epitopes. Both monoclonal antibodies and sera from experimental mouse models show a unique reactivity toward the THPs, compared to cyclic peptides containing the epitopes, revealing the importance that the epitopes are displayed in a triple-helical conformation. Importantly, antibodies against three of the THPs that contain major CII epitopes were found to be increased in sera from patients with RA, compared to control persons. These results indicate that such synthetic THPs should be included in multiplex analysis of autoantibodies that are uniquely occurring in individuals with early RA, to provide valuable information on disease prognosis and on what type of therapy should be chosen for individual patients.
Collapse
Affiliation(s)
- Johan Viljanen
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Erik Lönnblom
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Changrong Ge
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Jie Yang
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lei Cheng
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Silvia Aldi
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Weiwei Cai
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Alf Kastbom
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Christopher Sjöwall
- Department of Rheumatology and Department of Biochemical and Clinical Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Inger Gjertsson
- Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
- The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), 710004 Xi’an, China
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
6
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
7
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
8
|
Matrix Metalloproteinase Triple-Helical Peptide Inhibitors: Potential Cross-Reactivity with Caspase-11. Molecules 2019; 24:molecules24234355. [PMID: 31795279 PMCID: PMC6930605 DOI: 10.3390/molecules24234355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-helical peptide inhibitors (THPIs) of matrix metalloproteinases (MMPs) have recently been demonstrated to be effective in a variety of animal models of disease, coincidental with knockout studies. However, passenger mutations have been described in MMP knockout mice that impact the activity of other proteins, including caspase-11. Thus, it is possible that the results observed with THPIs may be based on inhibition of caspase-11, not MMPs. The present study evaluated whether THPIs were cross-reactive with caspase-11. Two different THPIs were tested, one that is known to inhibit MMP-1 and MMP-8 (GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI) and one that is selective for MMP-2 and MMP-9 (α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI). No inhibition of caspase-11 was observed with GlyΨ{PO2H–CH2}Ile–His–Lys–Gln THPI, even at an inhibitor concentration of 5 μM, while 5 μM α1(V)GlyΨ{PO2H-CH2}Val [mep14,32,Flp15,33] THPI exhibited 40% inhibition of caspase-11. Further testing of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI revealed nM inhibition of MMP-2, MMP-9, and MMP-13. Thus, the effectiveness of GlyΨ{PO2H-CH2}Ile-His-Lys-Gln THPI observed in a sepsis animal model may not be due to caspase-11 inhibition, but may be due to broader MMP inhibition than previously thought.
Collapse
|
9
|
Chen EA, Lin YS. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118458. [DOI: 10.1016/j.bbamcr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
10
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
11
|
Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front Immunol 2019; 10:1278. [PMID: 31214203 PMCID: PMC6558196 DOI: 10.3389/fimmu.2019.01278] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is facilitated by the proteolytic activities of members of the matrix metalloproteinase (MMP) family. More specifically, MMP-9 and MT1-MMP directly regulate angiogenesis, while several studies indicate a role for MMP-2 as well. The correlation of MMP activity to tumor angiogenesis has instigated numerous drug development programs. However, broad-based and Zn2+-chelating MMP inhibitors have fared poorly in the clinic. Selective MMP inhibition by antibodies, biologicals, and small molecules has utilized unique modes of action, such as (a) binding to protease secondary binding sites (exosites), (b) allosterically blocking the protease active site, or (c) preventing proMMP activation. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages. The mechanistically non-traditional MMP inhibitors offer treatment strategies for tumor angiogenesis that avoid the off-target toxicities and lack of specificity that plagued Zn2+-chelating inhibitors.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, United States
| |
Collapse
|
12
|
Talma M, Maślanka M, Mucha A. Recent developments in the synthesis and applications of phosphinic peptide analogs. Bioorg Med Chem Lett 2019; 29:1031-1042. [PMID: 30846252 DOI: 10.1016/j.bmcl.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
Synthetic pseudopeptides that fit well with the active site architecture allow the most effective binding to enzymes, similar to native substrates in high-energy transition states. Phosphinic acid peptide analogs that comprise the tetrahedral phosphorus moiety introduced to replace an internal amide bond exert such an isosteric or isoelectronic resemblance, combined with providing other advantageous features, for example, metal complexing properties. Accordingly, they are capable of inhibiting metal-dependent enzymes involved in biological functions in eukaryotic and prokaryotic cells. These enzymes are associated with notorious human diseases, such as cancer, e.g., matrix metalloproteinases, or are etiological factors of protozoal and bacterial infections, e.g., metalloaminopeptidases. The affinity and selectivity of these compounds can be conveniently adjusted, either by structural modification of dedicated side chains or by backbone elongation to enhance specific interactions with the corresponding binding pockets. Recent approaches to the synthesis of these compounds are illustrated by examples of the preparation of rationally designed structures of inhibitors of particular enzymes. Activity against appealing enzymatic targets is presented, along with the molecular mechanisms of action and therapeutic implications. Innovative aspects of phosphinic peptide application, e.g., as activity-based probes, and ligands of complexes of radioisotopes for nuclear medicine are also outlined.
Collapse
Affiliation(s)
- Michał Talma
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maślanka
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
13
|
Fields GB. Methods for the Construction of Collagen-Based Triple-Helical Peptides Designed as Matrix Metalloproteinase Inhibitors. Methods Mol Biol 2019; 1944:229-252. [PMID: 30840247 DOI: 10.1007/978-1-4939-9095-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides have found application for dissecting collagen-stabilizing forces, isolating receptor and protein binding sites in collagen, evaluating collagen-mediated cell signaling activities, mechanistic examination of collagenolytic proteases, and developing novel biomaterials and drug delivery vehicles. Due to their inherent stability to general proteolysis, triple-helical peptides present an opportunity as in vivo inhibitory agents. The present chapter provides methods for the construction of collagen-based triple-helical peptides designed as matrix metalloproteinase inhibitors.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, USA.
- Department of Chemistry, Scripps Research, Jupiter, FL, USA.
| |
Collapse
|
14
|
Tokmina-Roszyk M, Fields GB. Dissecting MMP P 10' and P 11' subsite sequence preferences, utilizing a positional scanning, combinatorial triple-helical peptide library. J Biol Chem 2018; 293:16661-16676. [PMID: 30185620 PMCID: PMC6204916 DOI: 10.1074/jbc.ra118.003266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/01/2018] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that remodel the extracellular matrix environment and mitigate outside-in signaling. Loss of regulation of MMP activity plays a role in numerous pathological states. In particular, aberrant collagenolysis affects tumor invasion and metastasis, osteoarthritis, and cardiovascular and neurodegenerative diseases. To evaluate the collagen sequence preferences of MMPs, a positional scanning synthetic combinatorial library was synthesized herein and was used to investigate the P10' and P11' substrate subsites. The scaffold for the library was a triple-helical peptide mimic of the MMP cleavage site in types I-III collagen. A FRET-based enzyme activity assay was used to evaluate the sequence preferences of eight MMPs. Deconvolution of the library data revealed distinct motifs for several MMPs and discrimination among closely related MMPs. On the basis of the screening results, several individual peptides were designed and evaluated. A triple-helical substrate incorporating Asp-Lys in the P10'-P11' subsites offered selectivity between MMP-14 and MMP-15, whereas Asp-Lys or Trp-Lys in these subsites discriminated between MMP-2 and MMP-9. Future screening of additional subsite positions will enable the design of selective triple-helical MMP probes that could be used for monitoring in vivo enzyme activity and enzyme-facilitated drug delivery. Furthermore, selective substrates could serve as the basis for the design of specific triple-helical peptide inhibitors targeting only those MMPs that play a detrimental role in a disease of interest.
Collapse
Affiliation(s)
- Michal Tokmina-Roszyk
- From the Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458 and
| | - Gregg B Fields
- From the Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458 and
- the Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
15
|
Stawikowski MJ, Fields GB. Tricine as a convenient scaffold for the synthesis of C-terminally branched collagen-model peptides. Tetrahedron Lett 2018; 59:130-134. [PMID: 29545652 PMCID: PMC5846494 DOI: 10.1016/j.tetlet.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and convenient method for the synthesis of C-terminally branched collagen-model peptides has been achieved using tricine (N-[tris(hydroxymethyl)methyl]glycine) as a branching scaffold and 1,2-diaminoethane or 1,4-diaminobutane as a linker. The peptide sequence was incorporated directly onto the linker and scaffold during solid-phase synthesis without additional manipulations. The resulting branched triple-helical peptides exhibited comparable thermal stabilities to the parent, unbranched sequence, and served as substrates for matrix metalloproteinase-1 (MMP-1). The tricine-based branch reported herein represents the simplest synthetic scaffold for the convenient synthesis of covalently linked homomeric collagen-model triple-helical peptides.
Collapse
Affiliation(s)
- Maciej J. Stawikowski
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
| | - Gregg B. Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
16
|
Schaal JB, Tran DQ, Subramanian A, Patel R, Laragione T, Roberts KD, Trinh K, Tongaonkar P, Tran PA, Minond D, Fields GB, Beringer P, Ouellette AJ, Gulko PS, Selsted ME. Suppression and resolution of autoimmune arthritis by rhesus θ-defensin-1, an immunomodulatory macrocyclic peptide. PLoS One 2017; 12:e0187868. [PMID: 29145473 PMCID: PMC5690597 DOI: 10.1371/journal.pone.0187868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
θ-defensins constitute a family of macrocyclic peptides expressed exclusively in Old World monkeys. The peptides are pleiotropic effectors of innate immunity, possessing broad spectrum antimicrobial activities and immunoregulatory properties. Here we report that rhesus θ-defensin 1 (RTD-1) is highly effective in arresting and reversing joint disease in a rodent model of rheumatoid arthritis (RA). Parenteral RTD-1 treatment of DA/OlaHsd rats with established pristane-induced arthritis (PIA) rapidly suppressed joint disease progression, restored limb mobility, and preserved normal joint architecture. RTD-1 significantly reduced joint IL-1β levels compared with controls. RTD-1 dose-dependently inhibited fibroblast-like synoviocyte (FLS) invasiveness and FLS IL-6 production. Consistent with the inhibition of FLS invasiveness, RTD-1 was a potent inhibitor of arthritogenic proteases including ADAMs 17 and 10 which activate TNFα, and inhibited matrix metalloproteases, and cathepsin K. RTD-1 was non-toxic, non-immunogenic, and effective when administered as infrequently as once every five days. Thus θ-defensins, which are absent in humans, have potential as retroevolutionary biologics for the treatment of RA.
Collapse
Affiliation(s)
- Justin B. Schaal
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dat Q. Tran
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Oryn Therapeutics, Vacaville, California, United States of America
| | - Akshay Subramanian
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Reshma Patel
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin D. Roberts
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Katie Trinh
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Prasad Tongaonkar
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Patti A. Tran
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dmitriy Minond
- Torrey Pines Institute for Molecular Studies, Port St Lucie, Florida, United States of America
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida, United States of America
- The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Paul Beringer
- School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - André J. Ouellette
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California, United States of America
| | - Percio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael E. Selsted
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. J Cell Biochem 2017; 118:3531-3548. [PMID: 28585723 PMCID: PMC5621753 DOI: 10.1002/jcb.26185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. J. Cell. Biochem. 118: 3531-3548, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| | | | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville 32224, Florida
| |
Collapse
|
18
|
Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28636874 DOI: 10.1016/j.bbamcr.2017.06.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic proteolysis of cell surface proteins and extracellular matrix (ECM) is critical for tissue homeostasis and cell signaling. These proteolytic activities are mediated predominantly by a family of proteases termed matrix metalloproteinases (MMPs). The growing evidence in recent years that ECM and non-ECM bioactive molecules (e.g., growth factors, cytokines, chemokines, on top of matrikines and matricryptins) have versatile functions redefines our view on the roles matrix remodeling enzymes play in many physiological and pathological processes, and underscores the notion that ECM proteolytic reaction mechanisms represent master switches in the regulation of critical biological processes and govern cell behavior. Accordingly, MMPs are not only responsible for direct degradation of ECM molecules but are also key modulators of cardinal bioactive factors. Many attempts were made to manipulate ECM degradation by targeting MMPs using small peptidic and organic inhibitors. However, due to the high structural homology shared by these enzymes, the majority of the developed compounds are broad-spectrum inhibitors affecting the proteolytic activity of various MMPs and other zinc-related proteases. These inhibitors, in many cases, failed as therapeutic agents, mainly due to the bilateral role of MMPs in pathological conditions such as cancer, in which MMPs have both pro- and anti-tumorigenic effects. Despite the important role of MMPs in many human diseases, none of the broad-range synthetic MMP inhibitors that were designed have successfully passed clinical trials. It appears that, designing highly selective MMP inhibitors that are also effective in vivo, is not trivial. The challenges related to designing selective and effective metalloprotease inhibitors, are associated in part with the aforesaid high structural homology and the dynamic nature of their protein scaffolds. Great progress was achieved in the last decade in understanding the biochemistry and biology of MMPs activity. This knowledge, combined with lessons from the past has drawn new "boundaries" for the development of the next-generation MMP inhibitors. These novel agents are currently designed to be highly specific, capable to discriminate between the homologous MMPs and ideally administered as a short-term topical treatment. In this review we discuss the latest progress in the fields of MMP inhibitors in terms of structure, function and their specific activity. The development of novel highly specific inhibitors targeting MMPs paves the path to study complex biological processes associated with ECM proteolysis in health and disease. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Maxim Levin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
19
|
Bhowmick M, Tokmina-Roszyk D, Onwuha-Ekpete L, Harmon K, Robichaud T, Fuerst R, Stawikowska R, Steffensen B, Roush W, Wong HR, Fields GB. Second Generation Triple-Helical Peptide Inhibitors of Matrix Metalloproteinases. J Med Chem 2017; 60:3814-3827. [PMID: 28394608 PMCID: PMC6413923 DOI: 10.1021/acs.jmedchem.7b00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of selective matrix metalloproteinase (MMP) inhibitors that also possess favorable solubility properties has proved to be especially challenging. A prior approach using collagen-model templates combined with transition state analogs produced a first generation of triple-helical peptide inhibitors (THPIs) that were effective in vitro against discrete members of the MMP family. These THPI constructs were also highly water-soluble. The present study sought improvements in the first generation THPIs by enhancing thermal stability and selectivity. A THPI selective for MMP-2 and MMP-9 was redesigned to incorporate non-native amino acids (Flp and mep), resulting in an increase of 18 °C in thermal stability. This THPI was effective in vivo in a mouse model of multiple sclerosis, reducing clinical severity and weight loss. Two other THPIs were developed to be more selective within the collagenolytic members of the MMP family. One of these THPIs was serendipitously more effective against MMP-8 than MT1-MMP and was utilized successfully in a mouse model of sepsis. The THPI targeting MMP-8 minimized lung damage, increased production of the anti-inflammatory cytokine IL-10, and vastly improved mouse survival.
Collapse
Affiliation(s)
- Manishabrata Bhowmick
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
- Sigma-Aldrich Corporation, 3 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Dorota Tokmina-Roszyk
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Lillian Onwuha-Ekpete
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Kelli Harmon
- Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, United States
| | - Trista Robichaud
- University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio Texas 78229, United States
| | - Rita Fuerst
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Roma Stawikowska
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
| | - Bjorn Steffensen
- University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio Texas 78229, United States
- School of Dental Medicine, Tufts University, 1 Kneeland Street, Boston, Massachusetts 02111, United States
| | - William Roush
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hector R. Wong
- Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, United States
| | - Gregg B. Fields
- Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States
- The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
20
|
Knapinska AM, Estrada CA, Fields GB. The Roles of Matrix Metalloproteinases in Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:339-354. [PMID: 28662827 DOI: 10.1016/bs.pmbts.2017.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) have long been implicated for roles in cancer initiation, tumor growth, and metastasis. However, pancreatic cancer clinical trials using broad-based MMP inhibitors were discouraging. To better evaluate the use of MMP inhibitors in pancreatic cancer, (a) more precise roles of individual MMPs in pancreatic cancer needed to be determined and (b) animal models that more accurately represented human pancreatic cancer needed to be developed. The last decade has seen substantial progress in both areas. MT1-MMP has been recognized as a critical mediator of several steps in pancreatic cancer progression, while MMP-9 appears to be an antitarget when considering pancreatic cancer therapies.
Collapse
Affiliation(s)
| | | | - Gregg B Fields
- Florida Atlantic University, Jupiter, FL, United States; The Scripps Research Institute/Scripps Florida, Jupiter, FL, United States.
| |
Collapse
|