1
|
Taher M, Dubey KD, Mazumdar S. Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chem Sci 2023; 14:14316-14326. [PMID: 38098704 PMCID: PMC10718072 DOI: 10.1039/d3sc02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes. A strategy combining computational tools with experiments has shown that the substrate scope and enzymatic activity can be enhanced by rational engineering of certain important channels such as the substrate entry and water channels along with the active site of the enzyme. The evolved enzymes showed an improved catalytic rate for hexadecane hydroxylation with high regioselectivity. The Q67L/Y68F mutation showed binding of the substrate in the active site, water channel mutation L80F/V220T showed improved catalytic activity through the peroxide shunt pathway and substrate entry channel mutation W269F/I270A showed better substrate accessibility to the active pocket. All-atom MD simulations provided the rationale for the inactivity of the wild-type CYP175A1 for hexadecane hydroxylation and predicted the above hot-spot residues to enhance the activity. The reaction mechanism was studied by QM/MM calculations for enzyme-substrate complexes and reaction intermediates. Detailed thermal and thermodynamic stability of all the mutants were analyzed and the results showed that the evolved enzymes were thermally stable. The present strategy showed promising results, and insights gained from this work can be applied to the general enzymatic system to expand substrate scope and improve catalytic activity.
Collapse
Affiliation(s)
- Mohd Taher
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi-NCR NH91, Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
2
|
Jóźwik IK, Bombino E, Abdulmughni A, Hartz P, Rozeboom HJ, Wijma HJ, Kappl R, Janssen DB, Bernhardt R, Thunnissen AMWH. Regio- and stereoselective steroid hydroxylation by CYP109A2 from Bacillus megaterium explored by X-ray crystallography and computational modeling. FEBS J 2023; 290:5016-5035. [PMID: 37453052 DOI: 10.1111/febs.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
The P450 monooxygenase CYP109A2 from Bacillus megaterium DSM319 was previously found to convert vitamin D3 (VD3) to 25-hydroxyvitamin D3. Here, we show that this enzyme is also able to convert testosterone in a highly regio- and stereoselective manner to 16β-hydroxytestosterone. To reveal the structural determinants governing the regio- and stereoselective steroid hydroxylation reactions catalyzed by CYP109A2, two crystal structures of CYP109A2 were solved in similar closed conformations, one revealing a bound testosterone in the active site pocket, albeit at a nonproductive site away from the heme-iron. To examine whether the closed crystal structures nevertheless correspond to a reactive conformation of CYP109A2, docking and molecular dynamics (MD) simulations were performed with testosterone and vitamin D3 (VD3) present in the active site. These MD simulations were analyzed for catalytically productive conformations, the relative occurrences of which were in agreement with the experimentally determined stereoselectivities if the predicted stability of each carbon-hydrogen bond was taken into account. Overall, the first-time determination and analysis of the catalytically relevant 3D conformation of CYP109A2 will allow for future small molecule ligand screening in silico, as well as enabling site-directed mutagenesis toward improved enzymatic properties of this enzyme.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Elvira Bombino
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Ammar Abdulmughni
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Philip Hartz
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Henriette J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Saarbrücken, Germany
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Andy-Mark W H Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Yang L, Zhang K, Xu M, Xie Y, Meng X, Wang H, Wei D. Mechanism-Guided Computational Design of ω-Transaminase by Reprograming of High-Energy-Barrier Steps. Angew Chem Int Ed Engl 2022; 61:e202212555. [PMID: 36300723 DOI: 10.1002/anie.202212555] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
ω-Transaminases (ω-TAs) show considerable potential for the synthesis of chiral amines. However, their low catalytic efficiency towards bulky substrates limits their application, and complicated catalytic mechanisms prevent precise enzyme design. Herein, we address this challenge using a mechanism-guided computational enzyme design strategy by reprograming the transition and ground states in key reaction steps. The common features among the three high-energy-barrier steps responsible for the low catalytic efficiency were revealed using quantum mechanics (QM). Five key residues were simultaneously tailored to stabilize the rate-limiting transition state with the aid of the Rosetta design. The 14 top-ranked variants showed 16.9-143-fold improved catalytic activity. The catalytic efficiency of the best variant, M9 (Q25F/M60W/W64F/I266A), was significantly increased, with a 1660-fold increase in kcat /Km and a 1.5-26.8-fold increase in turnover number (TON) towards various indanone derivatives.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
4
|
Ashworth MA, Bombino E, de Jong RM, Wijma HJ, Janssen DB, McLean KJ, Munro AW. Computation-Aided Engineering of Cytochrome P450 for the Production of Pravastatin. ACS Catal 2022; 12:15028-15044. [PMID: 36570080 PMCID: PMC9764288 DOI: 10.1021/acscatal.2c03974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Indexed: 11/29/2022]
Abstract
CYP105AS1 is a cytochrome P450 from Amycolatopsis orientalis that catalyzes monooxygenation of compactin to 6-epi-pravastatin. For fermentative production of the cholesterol-lowering drug pravastatin, the stereoselectivity of the enzyme needs to be inverted, which has been partially achieved by error-prone PCR mutagenesis and screening. In the current study, we report further optimization of the stereoselectivity by a computationally aided approach. Using the CoupledMoves protocol of Rosetta, a virtual library of mutants was designed to bind compactin in a pro-pravastatin orientation. By examining the frequency of occurrence of beneficial substitutions and rational inspection of their interactions, a small set of eight mutants was predicted to show the desired selectivity and these variants were tested experimentally. The best CYP105AS1 variant gave >99% stereoselective hydroxylation of compactin to pravastatin, with complete elimination of the unwanted 6-epi-pravastatin diastereomer. The enzyme-substrate complexes were also examined by ultrashort molecular dynamics simulations of 50 × 100 ps and 5 × 22 ns, which revealed that the frequency of occurrence of near-attack conformations agreed with the experimentally observed stereoselectivity. These results show that a combination of computational methods and rational inspection could improve CYP105AS1 stereoselectivity beyond what was obtained by directed evolution. Moreover, the work lays out a general in silico framework for specificity engineering of enzymes of known structure.
Collapse
Affiliation(s)
- Mark A. Ashworth
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Elvira Bombino
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - René M. de Jong
- DSM
Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Hein J. Wijma
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Dick B. Janssen
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands,
| | - Kirsty J. McLean
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom,Department
of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Andrew W. Munro
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Wan NW, Cui HB, Zhao L, Shan J, Chen K, Wang ZQ, Zhou XJ, Cui BD, Han WY, Chen YZ. Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric high throughput screening method was developed based on a dual-enzyme cascade and used for the directed evolution of cytochrome P450 hydroxylase activity.
Collapse
Affiliation(s)
- Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai-Bo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing Shan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Zhong-Qiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xiao-Jian Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
6
|
Ramírez-Palacios C, Wijma HJ, Thallmair S, Marrink SJ, Janssen DB. Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:5569-5580. [PMID: 34653331 PMCID: PMC8611723 DOI: 10.1021/acs.jcim.1c00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ω-Transaminases (ω-TAs) catalyze the conversion of ketones to chiral amines, often with high enantioselectivity and specificity, which makes them attractive for industrial production of chiral amines. Tailoring ω-TAs to accept non-natural substrates is necessary because of their limited substrate range. We present a computational protocol for predicting the enantioselectivity and catalytic selectivity of an ω-TA from Vibrio fluvialis with different substrates and benchmark it against 62 compounds gathered from the literature. Rosetta-generated complexes containing an external aldimine intermediate of the transamination reaction are used as starting conformations for multiple short independent molecular dynamics (MD) simulations. The combination of molecular docking and MD simulations ensures sufficient and accurate sampling of the relevant conformational space. Based on the frequency of near-attack conformations observed during the MD trajectories, enantioselectivities can be quantitatively predicted. The predicted enantioselectivities are in agreement with a benchmark dataset of experimentally determined ee% values. The substrate-range predictions can be based on the docking score of the external aldimine intermediate. The low computational cost required to run the presented framework makes it feasible for use in enzyme design to screen thousands of enzyme variants.
Collapse
Affiliation(s)
- Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Wang Z, Shaik S, Wang B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450 TT. J Am Chem Soc 2021; 143:1005-1016. [PMID: 33426875 DOI: 10.1021/jacs.0c11279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. While much is known about the machinery of the catalytic cycle of P450s, the mechanisms of long-range ET are largely unknown. Very recently, the first crystal structure of full-length P450TT was solved. This enables us to decipher the interdomain ET mechanism between the [2Fe-2S]-containing ferredoxin and the heme, by use of molecular dynamics simulations. In contrast to the "distal" conformation characterized in the crystal structure where the [2Fe-2S] cluster is ∼28 Å away from heme-Fe, our simulations demonstrated a "proximal" conformation of [2Fe-2S] that is ∼17 Å [and 13.7 Å edge-to-edge] away from heme-Fe, which may enable the interdomain ET. Key residues involved in ET pathways and interdomain complexation were identified, some of which have already been verified by recent mutation studies. The conformational transit of ferredoxin between "distal" and "proximal" was found to be controlled mostly by the long-range electrostatic interactions between the ferredoxin domain and the other two domains. Furthermore, our simulations show that the full-length P450TT utilizes a flexible ET pathway that resembles either P450Scc or P450cam. Thus, this study provides a uniform picture of the ET process between reductase domains and heme domain.
Collapse
Affiliation(s)
- Zhanfeng Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
8
|
Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat Commun 2020; 11:2676. [PMID: 32472090 PMCID: PMC7260179 DOI: 10.1038/s41467-020-16500-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 monooxygenases are versatile heme-thiolate enzymes that catalyze a wide range of reactions. Self-sufficient cytochrome P450 enzymes contain the redox partners in a single polypeptide chain. Here, we present the crystal structure of full-length CYP116B46, a self-sufficient P450. The continuous polypeptide chain comprises three functional domains, which align well with the direction of electrons traveling from FMN to the heme through the [2Fe-2S] cluster. FMN and the [2Fe-2S] cluster are positioned closely, which facilitates efficient electron shuttling. The edge-to-edge straight-line distance between the [2Fe-2S] cluster and heme is approx. 25.3 Å. The role of several residues located between the [2Fe-2S] cluster and heme in the catalytic reaction is probed in mutagenesis experiments. These findings not only provide insights into the intramolecular electron transfer of self-sufficient P450s, but are also of interest for biotechnological applications of self-sufficient P450s. Self-sufficient cytochrome P450 monooxygenases, which contain all redox partners in a single polypeptide chain, are of interest for biotechnological applications. Here, the authors present the crystal structure of full-length Thermobispora bispora CYP116B46 and discuss the potential electron transfer pathway.
Collapse
|
9
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|
11
|
Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. Characterization of a Self-Sufficient Cytochrome P450 Monooxygenase from Deinococcus apachensis for Enantioselective Benzylic Hydroxylation. Chembiochem 2020; 21:1820-1825. [PMID: 32012422 DOI: 10.1002/cbic.201900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Indexed: 12/22/2022]
Abstract
A self-sufficient cytochrome P450 monooxygenase from Deinococcus apachensis (P450DA) was identified and successfully overexpressed in Escherichia coli BL21(DE3). P450DA would be a member of the CYP102D subfamily and assigned as CYP102D2 according to the phylogenetic tree and sequence alignment. Purification and characterization of the recombinant P450DA indicated both NADH and NADPH could be used by P450DA as a reducing cofactor. The recombinant E. coli (P450DA) strain was functionally active, showing excellent enantioselectivity for benzylic hydroxylation of methyl 2-phenylacetate. Further substrate scope studies revealed that P450DA is able to catalyze benzylic hydroxylation of a variety of compounds, affording the corresponding chiral benzylic alcohols in 86-99 % ee and 130-1020 total turnover numbers.
Collapse
Affiliation(s)
- Lingzhi Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Haibo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
12
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
13
|
Doyon TJ, Perkins JC, Baker Dockrey SA, Romero EO, Skinner KC, Zimmerman PM, Narayan ARH. Chemoenzymatic o-Quinone Methide Formation. J Am Chem Soc 2019; 141:20269-20277. [PMID: 31840992 DOI: 10.1021/jacs.9b10474] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of reactive intermediates and interception of these fleeting species under physiological conditions is a common strategy employed by Nature to build molecular complexity. However, selective formation of these species under mild conditions using classical synthetic techniques is an outstanding challenge. Here, we demonstrate the utility of biocatalysis in generating o-quinone methide intermediates with precise chemoselectivity under mild, aqueous conditions. Specifically, α-ketoglutarate-dependent non-heme iron enzymes, CitB and ClaD, are employed to selectively modify benzylic C-H bonds of o-cresol substrates. In this transformation, biocatalytic hydroxylation of a benzylic C-H bond affords a benzylic alcohol product which, under the aqueous reaction conditions, is in equilibrium with the corresponding o-quinone methide. o-Quinone methide interception by a nucleophile or a dienophile allows for one-pot conversion of benzylic C-H bonds into C-C, C-N, C-O, and C-S bonds in chemoenzymatic cascades on preparative scale. The chemoselectivity and mild nature of this platform is showcased here by the selective modification of peptides and chemoenzymatic synthesis of the chroman natural product (-)-xyloketal D.
Collapse
|
14
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylation Chemistry for Bioconjugation. Angew Chem Int Ed Engl 2019; 58:4810-4839. [PMID: 30399206 PMCID: PMC6433541 DOI: 10.1002/anie.201806009] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Bioconjugation chemistry has been used to prepare modified biomolecules with functions beyond what nature intended. Central to these techniques is the development of highly efficient and selective bioconjugation reactions that operate under mild, biomolecule compatible conditions. Methods that form a nucleophile-sp2 carbon bond show promise for creating bioconjugates with new modifications, sometimes resulting in molecules with unparalleled functions. Here we outline and review sulfur, nitrogen, selenium, oxygen, and carbon arylative bioconjugation strategies and their applications to modify peptides, proteins, sugars, and nucleic acids.
Collapse
Affiliation(s)
- Chi Zhang
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Ekaterina V. Vinogradova
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Dr. E. V. Vinogradova, The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander M. Spokoyny
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Prof. Dr. A. M. Spokoyny, Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Stephen L. Buchwald
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Bradley L. Pentelute
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| |
Collapse
|
15
|
Selective hydroxylation of 1,8- and 1,4-cineole using bacterial P450 variants. Arch Biochem Biophys 2019; 663:54-63. [DOI: 10.1016/j.abb.2018.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
|
16
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylierungschemie für die Biokonjugation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Zhang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ekaterina V. Vinogradova
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Skaggs Institute for Chemical Biology and Department of Molecular MedicineThe Scripps Research Institute La Jolla CA 92037 USA
| | - Alexander M. Spokoyny
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
17
|
Alkhalaf LM, Barry SM, Rea D, Gallo A, Griffiths D, Lewandowski JR, Fulop V, Challis GL. Binding of Distinct Substrate Conformations Enables Hydroxylation of Remote Sites in Thaxtomin D by Cytochrome P450 TxtC. J Am Chem Soc 2018; 141:216-222. [DOI: 10.1021/jacs.8b08864] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lona M. Alkhalaf
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Sarah M. Barry
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Angelo Gallo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Daniel Griffiths
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | | | - Vilmos Fulop
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Gregory L. Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
Bowen AM, Johnson EOD, Mercuri F, Hoskins NJ, Qiao R, McCullagh JSO, Lovett JE, Bell SG, Zhou W, Timmel CR, Wong LL, Harmer JR. A Structural Model of a P450-Ferredoxin Complex from Orientation-Selective Double Electron-Electron Resonance Spectroscopy. J Am Chem Soc 2018; 140:2514-2527. [PMID: 29266939 DOI: 10.1021/jacs.7b11056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
Collapse
Affiliation(s)
- Alice M Bowen
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Eachan O D Johnson
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Francesco Mercuri
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) Via P. Gobetti 101, 40129 Bologna, Italy
| | - Nicola J Hoskins
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Ruihong Qiao
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | - Janet E Lovett
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Stephen G Bell
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Weihong Zhou
- College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Christiane R Timmel
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Luet Lok Wong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| | - Jeffrey R Harmer
- Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
19
|
Ilie A, Harms K, Reetz MT. P450-Catalyzed Regio- and Stereoselective Oxidative Hydroxylation of 6-Iodotetralone: Preparative-Scale Synthesis of a Key Intermediate for Pd-Catalyzed Transformations. J Org Chem 2018; 83:7504-7508. [DOI: 10.1021/acs.joc.7b02878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adriana Ilie
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Klaus Harms
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Str. 4, 35032 Marburg, Germany
| |
Collapse
|
20
|
Tavanti M, Porter JL, Sabatini S, Turner NJ, Flitsch SL. Panel of New Thermostable CYP116B Self-Sufficient Cytochrome P450 Monooxygenases that Catalyze C−H Activation with a Diverse Substrate Scope. ChemCatChem 2018. [DOI: 10.1002/cctc.201701510] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Joanne L. Porter
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
21
|
Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1. Enzyme Microb Technol 2018; 111:29-37. [PMID: 29421034 DOI: 10.1016/j.enzmictec.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
Abstract
The stereoselective oxidation of hydrocarbons is an area of research where enzyme biocatalysis can make a substantial impact. The cyclic ketone isophorone was stereoselectively hydroxylated (≥95%) by wild-type CYP102A1 to form (R)-4-hydroxyisophorone, an important chiral synthon and flavour and fragrance compound. CYP102A1 variants were also selective for 4-hydroxyisophorone formation and the product formation rate increased over the wild-type enzyme by up to 285-fold, with the best mutants being R47L/Y51F/I401P and A74G/F87V/L188Q. The latter variant, which contained mutations in the distal substrate binding pocket, was marginally less selective. Combining perfluorodecanoic acid decoy molecules with the rate accelerating variant R47L/Y51F/I401P engendered further improvement with the purified enzymes. However when the decoy molecules were used with A74G/F87V/L188Q the amount of product generated by the enzyme was reduced. Addition of decoy molecules to whole-cell turnovers did not improve the productivity of these CYP102A1 systems. WT CYP101A1 formed significant levels of 7-hydroxyisophorone as a minor product alongside 4-hydroxyisophorone. However the F87W/Y96F/L244A/V247L CYP101A1 mutant was ≥98% selective for (R)-4-hydroxyisophorone. A comparison of the two enzyme systems using whole-cell oxidation reactions showed that the best CYP101A1 variant was able to generate more product. We also characterised that the further oxidation metabolite 4-ketoisophorone was produced and then subsequently reduced to levodione by an endogenous Escherichia coli ene reductase.
Collapse
|
22
|
Liu J, Wu S, Li Z. Recent advances in enzymatic oxidation of alcohols. Curr Opin Chem Biol 2017; 43:77-86. [PMID: 29258054 DOI: 10.1016/j.cbpa.2017.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Abstract
Enzymatic alcohol oxidation plays an important role in chemical synthesis. In the past two years, new alcohol oxidation enzymes were developed through genome-mining and protein engineering, such as new copper radical oxidases with broad substrate scope, alcohol dehydrogenases with altered cofactor preference and a flavin-dependent alcohol oxidase with enhanced oxygen coupling. New cofactor recycling methods were reported for alcohol dehydrogenase-catalyzed oxidation with photocatalyst and coupled glutaredoxin-glutathione reductase as promising examples. Different alcohol oxidation systems were used for the oxidation of primary and secondary alcohols, especially in the cascade conversion of alcohols to lactones, lactams, chiral amines, chiral alcohols and hydroxyketones. Among them, biocatalyst with low enantioselectivity demonstrated an interesting feature for complete conversion of racemic secondary alcohols through non-enantioselective oxidation.
Collapse
Affiliation(s)
- Ji Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
23
|
Tavanti M, Parmeggiani F, Castellanos JRG, Mattevi A, Turner NJ. One-Pot Biocatalytic Double Oxidation of α-Isophorone for the Synthesis of Ketoisophorone. ChemCatChem 2017. [DOI: 10.1002/cctc.201700620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michele Tavanti
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| |
Collapse
|
24
|
Holec C, Hartrampf U, Neufeld K, Pietruszka J. P450 BM3-Catalyzed Regio- and Stereoselective Hydroxylation Aiming at the Synthesis of Phthalides and Isocoumarins. Chembiochem 2017; 18:676-684. [PMID: 28107587 DOI: 10.1002/cbic.201600685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 BM3 monooxygenases are able to catalyze the regio- and stereoselective oxygenation of a broad range of substrates, with promising potential for synthetic applications. To study the suitability of P450 BM3 variants for stereoselective benzylic hydroxylation of 2-alkylated benzoic acid esters, the biotransformation of methyl 2-ethylbenzoate, resulting in both enantiomeric forms of 3-methylphthalide, was investigated. In the case of methyl 2-propylbenzoate as a substrate the regioselectivity of the reaction was shifted towards β-hydroxylation, resulting in the synthesis of enantioenriched R- and S-configured 3-methylisochroman-1-one. The potential of P450 BM3 variants for regio- and stereoselective synthesis of phthalides and isocoumarins offers a new route to a class of compounds that are valuable synthons for a variety of natural compounds.
Collapse
Affiliation(s)
- Claudia Holec
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany
| | - Ute Hartrampf
- Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Katharina Neufeld
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie der Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Gebäude 15.8, 52426, Jülich, Germany.,Institut für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, 52426, Jülich, Germany
| |
Collapse
|
25
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
26
|
Jóźwik IK, Kiss FM, Gricman Ł, Abdulmughni A, Brill E, Zapp J, Pleiss J, Bernhardt R, Thunnissen AMWH. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J 2016; 283:4128-4148. [PMID: 27686671 PMCID: PMC5132081 DOI: 10.1111/febs.13911] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are attractive enzymes for the pharmaceutical industry, in particular, for applications in steroidal drug synthesis. Here, we report a comprehensive functional and structural characterization of CYP109E1, a novel steroid‐converting cytochrome P450 enzyme identified from the genome of Bacillus megaterium DSM319. In vitro and whole‐cell in vivo turnover experiments, combined with binding assays, revealed that CYP109E1 is able to hydroxylate testosterone at position 16β. Related steroids with bulky substituents at carbon C17, like corticosterone, bind to the enzyme without being converted. High‐resolution X‐ray structures were solved of a steroid‐free form of CYP109E1 and of complexes with testosterone and corticosterone. The structural analysis revealed a highly dynamic active site at the distal side of the heme, which is wide open in the absence of steroids, can bind four ordered corticosterone molecules simultaneously, and undergoes substantial narrowing upon binding of single steroid molecules. In the crystal structures, the single bound steroids adopt unproductive binding modes coordinating the heme‐iron with their C3‐keto oxygen. Molecular dynamics (MD) simulations suggest that the steroids may also bind in ~180° reversed orientations with the C16 carbon and C17‐substituents pointing toward the heme, leading to productive binding of testosterone explaining the observed regio‐ and stereoselectivity. The X‐ray structures and MD simulations further identify several residues with important roles in steroid binding and conversion, which could be confirmed by site‐directed mutagenesis. Taken together, our results provide unique insights into the CYP109E1 activity, substrate specificity, and regio/stereoselectivity. Database The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession codes 5L90 (steroid‐free CYP109E1), 5L91 (CYP109E1‐COR4), 5L94 (CYP109E1‐TES), and 5L92 (CYP109E1‐COR). Enzymes Cytochrome P450 monooxygenase CYP109E1, EC 1.14.14.1, UniProt ID: D5DKI8, Adrenodoxin reductase EC 1.18.1.6.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Flora M Kiss
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Łukasz Gricman
- Institute of Technical Biochemistry, University of Stuttgart, Germany
| | - Ammar Abdulmughni
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Elisa Brill
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Josef Zapp
- Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Juergen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Andy-Mark W H Thunnissen
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|