1
|
Tsuji K, Tamamura H, Burke TR. Affinity enhancement of polo-like kinase 1 polo box domain-binding ligands by a bivalent approach using a covalent kinase-binding component. RSC Chem Biol 2024; 5:721-728. [PMID: 39092437 PMCID: PMC11289893 DOI: 10.1039/d4cb00031e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
The polo-like kinase 1 (Plk1) is an important cell cycle regulator that is recognized as a target molecule for development of anti-cancer agents. Plk1 consists of a catalytic kinase domain (KD) and a polo-box domain (PBD), which engages in protein-protein interactions (PPIs) essential to proper Plk1 function. Recently, we developed extremely high-affinity PBD-binding inhibitors based on a bivalent approach using the Plk1 KD-binding inhibitor, BI2536, and a PBD-binding peptide. Certain of the resulting bivalent constructs exhibited more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Herein, we report an extensive investigation of bivalent ligands that utilize the non-selective kinase inhibitor Wortmannin as a Plk1 KD-binding component. We found that bivalent ligands incorporating Wortmannin demonstrated affinity enhancements that could be similar to what we had obtained with BI2536 and that they could tightly bind to the protein. This suggests that these tight binding ligands might be useful for structural analysis of full-length Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| |
Collapse
|
2
|
Park JE, Lee H, Oliva P, Kirsch K, Kim B, Ahn JI, Alverez CN, Gaikwad S, Krausz KW, O’Connor R, Rai G, Simeonov A, Mock BA, Gonzalez FJ, Lee KS, Jacobson KA. Structural Optimization and Anticancer Activity of Polo-like Kinase 1 (Plk1) Polo-Box Domain (PBD) Inhibitors and Their Prodrugs. ACS Pharmacol Transl Sci 2023; 6:422-446. [PMID: 36926457 PMCID: PMC10012257 DOI: 10.1021/acsptsci.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 02/22/2023]
Abstract
Polo-like kinase 1 (Plk1), a mitotic kinase whose activity is widely upregulated in various human cancers, is considered an attractive target for anticancer drug discovery. Aside from the kinase domain, the C-terminal noncatalytic polo-box domain (PBD), which mediates the interaction with the enzyme's binding targets or substrates, has emerged as an alternative target for developing a new class of inhibitors. Various reported small molecule PBD inhibitors exhibit poor cellular efficacy and/or selectivity. Here, we report structure-activity relationship (SAR) studies on triazoloquinazolinone-derived inhibitors, such as 43 (a 1-thioxo-2,4-dihydrothieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one) that effectively block Plk1, but not Plk2 and Plk3 PBDs, with improved affinity and drug-like properties. The range of prodrug moieties needed for thiol group masking of the active drugs has been expanded to increase cell permeability and mechanism-based cancer cell (L363 and HeLa) death. For example, a 5-thio-1-methyl-4-nitroimidazolyl prodrug 80, derived from 43, showed an improved cellular potency (GI50 4.1 μM). As expected, 80 effectively blocked Plk1 from localizing to centrosomes and kinetochores and consequently induced potent mitotic block and apoptotic cell death. Another prodrug 78 containing 9-fluorophenyl in place of the thiophene-containing heterocycle in 80 also induced a comparable degree of anti-Plk1 PBD effect. However, orally administered 78 was rapidly converted in the bloodstream to parent drug 15, which was shown be relatively stable toward in vivo oxidation due to its 9-fluorophenyl group in comparison to unsubstituted phenyl. Further derivatization of these inhibitors, particularly to improve the systemic prodrug stability, could lead to a new class of therapeutics against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hobin Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Paola Oliva
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Klara Kirsch
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bora Kim
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jong Il Ahn
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Celeste N. Alverez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Snehal Gaikwad
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Kristopher W. Krausz
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert O’Connor
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- Division
of Preclinical Innovation, National Center
for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United States
| | - Frank J. Gonzalez
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S. Lee
- Cancer
Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Selvaraj C. Therapeutic targets in cancer treatment: Cell cycle proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:313-342. [PMID: 37061336 DOI: 10.1016/bs.apcsb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cancer has been linked to the uncontrolled proliferation of cells and the overexpression of cell-cycle genes. The cell cycle machinery plays a crucial role in the regulation of the apoptosis to mitosis to growth phase progression. The mechanisms of the cell cycle also play an important role in preventing DNA damage. There are multiple members of the protein kinase family that are involved in the activities of the cell cycle. Essential cyclins effectively regulate cyclin-dependent kinases (CDKs), which are themselves adversely regulated by naturally occurring CDK inhibitors. Despite the fact that various compounds can effectively block the cell cycle kinases and being investigated for their potential to fight cancer. This chapter explains the detail of cell cycle and checkpoint regulators, that are crucial to the malignant cellular process. The known CDKs inhibitors and their mechanism of action in various cancers have also been addressed as a step toward the development of a possibly novel technique for the design of new drugs against cell cycle kinase proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Stafford JM, Wyatt MD, McInnes C. Inhibitors of the PLK1 polo-box domain: drug design strategies and therapeutic opportunities in cancer. Expert Opin Drug Discov 2023; 18:65-81. [PMID: 36524399 DOI: 10.1080/17460441.2023.2159942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polo Like Kinase 1 (PLK1) is a key regulator of mitosis and its overexpression is frequently observed in a wide variety of human cancers, while often being associated with poor survival rates. Therefore, it is considered a potential and attractive target for cancer therapeutic development. The Polo like kinase family is characterized by the presence of a unique C terminal polobox domain (PBD) involved in regulating kinase activity and subcellular localization. Among the two functionally essential, druggable sites with distinct properties that PLK1 offers, targeting the PBD presents an alternative approach for therapeutic development. AREAS COVERED Significant progress has been made in progressing from the peptidic PBD inhibitors first identified, to peptidomimetic and recently drug-like small molecules. In this review, the rationale for targeting the PBD over the ATP binding site is discussed, along with recent progress, challenges, and outlook. EXPERT OPINION The PBD has emerged as a viable alternative target for the inhibition of PLK1, and progress has been made in using compounds to elucidate mechanistic aspects of activity regulation and in determining roles of the PBD. Studies have resulted in proof of concept of in vivo efficacy suggesting promise for PBD binders in clinical development.
Collapse
Affiliation(s)
- Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Tsuji K, Hymel D, Ma B, Tamamura H, Nussinov R, Burke TR. Development of ultra-high affinity bivalent ligands targeting the polo-like kinase 1. RSC Chem Biol 2022; 3:1111-1120. [PMID: 36128509 PMCID: PMC9428768 DOI: 10.1039/d2cb00153e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target. In addition to its catalytic kinase domain (KD), Plk1 contains a polo-box domain (PBD), which engages in protein–protein interactions (PPIs) essential to proper Plk1 function. We have developed a number of extremely high-affinity PBD-binding peptide inhibitors. However, we have reached an apparent limit to increasing the affinities of these monovalent ligands. Accordingly, we undertook an extensive investigation of bivalent ligands, designed to engage both KD and PBD regions of Plk1. This has resulted in bivalent constructs exhibiting more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Startlingly, and in contradiction to widely accepted notions of KD–PBD interactions, we have found that full affinities can be retained even with minimal linkers between KD and PBD-binding components. In addition to significantly advancing the development of PBD-binding ligands, our findings may cause a rethinking of the structure – function of Plk1. The polo-like kinase 1 (Plk1) is an important mediator of cell cycle regulation and a recognized anti-cancer molecular target.![]()
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Buyong Ma
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Laboratory of Immunometabolism, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
6
|
Zhang Z, Xing X, Guan P, Song S, You G, Xia C, Liu T. Recent progress in agents targeting polo-like kinases: Promising therapeutic strategies. Eur J Med Chem 2021; 217:113314. [PMID: 33765606 DOI: 10.1016/j.ejmech.2021.113314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Polo-like kinases (PLKs) play important roles in regulating multiple aspects of cell cycle and cell proliferation. In many cancer types, PLK family members are often dysregulated, which can lead to uncontrolled cell proliferation and aberrant cell division and has been shown to associate with poor prognosis of cancers. The key roles of PLK kinases in cancers lead to an enhanced interest in them as promising targets for anticancer drug development. In consideration of PLK inhibitors and some other anticancer agents, such as BRD4, EEF2K and Aurora inhibitors, exert synergy effects in cancer cells, dual-targeting of PLK and other cancer-related targets is regarded as an rational and potent strategy to enhance the effectiveness of single-targeting therapy for cancer treatment. This review introduces the PLK family members at first and then focuses on the recent advances of single-target PLK inhibitors and summarizes the corresponding SARs of them. Moreover, we discuss the synergisms between PLK and other anti-tumor targets, and sum up the current dual-target agents based on them.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Xiaolan Xing
- Yangtze River Pharmaceutical Group Shanghai Haini Pharmaceutical Co., Ltd. Pudong, Shanghai, 201100, PR China
| | - Peng Guan
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Guirong You
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China.
| |
Collapse
|
7
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Curr Med Chem 2020; 27:6306-6355. [DOI: 10.2174/0929867326666190620101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background:
Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs).
Objective:
This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.
Method:
Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed.
Results and Conclusion:
PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
8
|
Tsuji K, Hymel D, Burke TR. A new genre of fluorescence recovery assay to evaluate polo-like kinase 1 ATP-competitive inhibitors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4418-4421. [PMID: 32970049 PMCID: PMC7523589 DOI: 10.1039/d0ay01223h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using a probe consisting of a fluorescein-labeled variant of the potent polo-like kinase 1 (Plk1) inhibitor BI2536 [FITC-PEG-Lys(BI2536) 4], we were able to determine half maximal inhibitory concentration (IC50) of ATP-competitive Type 1 inhibitors of Plk1 by means of a fluorescence recovery assay. This methodology represents a cost-effective and simple alternative to traditional kinase assays for initial screening of potential Plk1 inhibitors.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, 21702 USA.
| | | | | |
Collapse
|
9
|
Kolosenko I, Palm-Apergi C. Small-molecule inhibitors for targeting polo-like kinase 1. Future Med Chem 2020; 12:1457-1460. [PMID: 32638616 DOI: 10.4155/fmc-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, 141 57 Huddinge, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular & Cellular Medicine, Karolinska Institutet, Stockholm, 141 57 Huddinge, Sweden
| |
Collapse
|
10
|
Affiliation(s)
- Xufeng Huang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhouling Xie
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chenzhong Liao
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
11
|
Abdelfatah S, Fleischer E, Klinger A, Wong VKW, Efferth T. Identification of inhibitors of the polo-box domain of polo-like kinase 1 from natural and semisynthetic compounds. Invest New Drugs 2020; 38:1-9. [PMID: 30877426 DOI: 10.1007/s10637-019-00752-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022]
Abstract
PLK1 has an important role in the regulation of cell cycle and represents an important target for cancer treatment. This enzyme belongs to the Polo-like kinases family, which is characterized by a regulatory domain named Polo-box domain (PBD). Rather than regular kinase inhibitors, this domain provides high selectivity to PLK1. Here, we report on four novel PLK1 PBD inhibitors identified by cytotoxicity screening and fluorescence polarization assay of a chemical library of natural and semisynthetic compounds. These compounds revealed two- to three-fold higher selectivity to the PDB of PLK1 than to those of the related family members, PLK2 and PLK3. These four substances inhibited tumor cell growth of sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. The tested compounds increased the apoptotic cell fraction, which indicates apoptosis as a major mechanism of cell death. Cell cycle analysis showed compound (5) arrested the cell cycle of CCRF-CEM cells in the G2/M phase, while the other three molecules ((compound (3), compound (4), and compound (6)) exerted pronounced cytotoxicity with an increase of cells in the sub-G1 population. Molecular docking was performed for the understanding of ligand-protein interaction, the tested candidates showed strong binding affinity to PLK1 PBD. In conclusion, we identified four new chemical scaffolds that may serve as lead compounds for the development of selective PLK1 inhibitors in the future.
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany
| | | | | | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Huggins DJ, Hardwick BS, Sharma P, Emery A, Laraia L, Zhang F, Narvaez AJ, Roberts-Thomson M, Crooks AT, Boyle RG, Boyce R, Walker DW, Mateu N, McKenzie GJ, Spring DR, Venkitaraman AR. Development of a Novel Cell-Permeable Protein-Protein Interaction Inhibitor for the Polo-box Domain of Polo-like Kinase 1. ACS OMEGA 2020; 5:822-831. [PMID: 31956833 PMCID: PMC6964520 DOI: 10.1021/acsomega.9b03626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/13/2019] [Indexed: 05/10/2023]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator of mitosis and a recognized drug target for cancer therapy. Inhibiting the polo-box domain of PLK1 offers potential advantages of increased selectivity and subsequently reduced toxicity compared with targeting the kinase domain. However, many if not all existing polo-box domain inhibitors have been shown to be unsuitable for further development. In this paper, we describe a novel compound series, which inhibits the protein-protein interactions of PLK1 via the polo-box domain. We combine high throughput screening with molecular modeling and computer-aided design, synthetic chemistry, and cell biology to address some of the common problems with protein-protein interaction inhibitors, such as solubility and potency. We use molecular modeling to improve the solubility of a hit series with initially poor physicochemical properties, enabling biophysical and biochemical characterization. We isolate and characterize enantiomers to improve potency and demonstrate on-target activity in both cell-free and cell-based assays, entirely consistent with the proposed binding model. The resulting compound series represents a promising starting point for further progression along the drug discovery pipeline and a new tool compound to study kinase-independent PLK functions.
Collapse
Affiliation(s)
- David J. Huggins
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
- TCM
Group, Cavendish Laboratory, University
of Cambridge, 19 JJ Thomson
Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Bryn S. Hardwick
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Pooja Sharma
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Amy Emery
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Luca Laraia
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Fengzhi Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Ana J. Narvaez
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Meredith Roberts-Thomson
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Alex T. Crooks
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - Robert G. Boyle
- Sentinel
Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, United Kingdom
| | - Richard Boyce
- Sentinel
Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, United Kingdom
| | - David W. Walker
- Sentinel
Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, United Kingdom
| | - Natalia Mateu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Grahame J. McKenzie
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | - David R. Spring
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Ashok R. Venkitaraman
- Medical
Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| |
Collapse
|
13
|
Lv X, Yang X, Zhan MM, Cao P, Zheng S, Peng R, Han J, Xie Z, Tu Z, Liao C. Structure-based design and SAR development of novel selective polo-like kinase 1 inhibitors having the tetrahydropteridin scaffold. Eur J Med Chem 2019; 184:111769. [PMID: 31629162 DOI: 10.1016/j.ejmech.2019.111769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Polo-like kinase 1 (Plk1) is a validated target for the treatment of cancer. In this report, by analyzing amino acid residue differences among the ATP-binding pockets of Plk1, Plk2 and Plk3, novel selective Plk1 inhibitors were designed based on BI 2536 and BI 6727, two Plk1 inhibitors in clinical studies for cancer treatments. The Plk1 inhibitors reported herein have more potent inhibition against Plk1 and better isoform selectivity in the Plk family than these two lead compounds. In addition, by introducing a hydroxyl group, our compounds have significantly improved solubility and may target specific polar residues Arg57, Glu69 and Arg134 of Plk1. Moreover, most of our compounds exhibited antitumor activities in the nanomolar range against several cancer cell lines in the MTT assay. Through this structure-based design strategy and SAR study, a few promising selective Plk1 inhibitors having the tetrahydropteridin scaffold, for example, L34, were identified and could be for further anticancer research.
Collapse
Affiliation(s)
- Xiao Lv
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Miao Zhan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shihong Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruijun Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhouling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
14
|
Abdelfatah S, Berg A, Huang Q, Yang LJ, Hamdoun S, Klinger A, Greten HJ, Fleischer E, Berg T, Wong VK, Efferth T. MCC1019, a selective inhibitor of the Polo-box domain of Polo-like kinase 1 as novel, potent anticancer candidate. Acta Pharm Sin B 2019; 9:1021-1034. [PMID: 31649851 PMCID: PMC6804483 DOI: 10.1016/j.apsb.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023] Open
Abstract
Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest—a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ABC, avidin-biotin complex
- APC/C, anaphase-promoting complex/cyclosome
- BUBR1, budding uninhibited by benzimidazole-related 1
- CDC2, cell division cycle protein 2 homolog
- CDC25, cell division cycle 25
- CDK, cyclin-dependent kinase
- Cell cycle
- DAPI, 4′,6-diamidino-2-phenylindole
- DAPKs, death-associated protein kinase
- FBS, fetal bovine serum
- FOXO, forkhead box O
- HIF-1α, hypoxia-inducible factor 1 α
- IC50, 50% inhibition concentration
- IHC, immunohistochemistry
- Kd, the dissociation constant
- LC3, light chain 3
- MFP, M phase promoting factor
- MST, microscale thermophoresis
- MTD, maximal tolerance dose
- Mono-targeted therapy
- Nec-1, necrostatin 1
- Necroptosis
- PARP-1, poly(ADP-ribose) polymerase-1
- PBD, Polo box domain
- PDB, Protein Data Bank
- PI, propidium iodide
- PLK1
- PLK1, Polo-like kinase
- Polo box domain
- Polo-like kinase
- SAC, spindle assembly checkpoint
- Spindle damage
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Angela Berg
- Leipzig University, Institute of Organic Chemistry, Leipzig 04103, Germany
| | - Qi Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | | | - Henry J. Greten
- Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto 4099-003, Portugal
| | | | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Leipzig 04103, Germany
| | - Vincent K.W. Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
- Corresponding author. Tel.: +49 6131 3925751; fax: +49 6131 23752.
| |
Collapse
|
15
|
Zhao XZ, Tsuji K, Hymel D, Burke TR. Development of Highly Selective 1,2,3-Triazole-containing Peptidic Polo-like Kinase 1 Polo-box Domain-binding Inhibitors. Molecules 2019; 24:E1488. [PMID: 31014020 PMCID: PMC6515314 DOI: 10.3390/molecules24081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 01/02/2023] Open
Abstract
Members of the polo-like kinase (Plk) family of serine/threonine protein kinases play crucial roles in cell cycle regulation and proliferation. Of the five Plks (Plk1-5), Plk1 is recognized as an anticancer drug target. Plk1 contains multiple structural components that are important for its proper biological function. These include an N-terminal catalytic domain and a C-terminal non-catalytic polo-box domain (PBD). The PBD binds to phosphothreonine (pT) and phosphoserine-containing sequences. Blocking PBD-dependent interactions offers a potential means of down-regulating Plk1 function that is distinct from targeting its ATP-binding site. Previously, we demonstrated by tethering alkylphenyl chains from the N(π)-position of the His residue in the 5-mer PLHSpT, that we were able to access a hydrophobic "cryptic" binding pocket on the surface of the PBD, and in so doing enhance binding affinities by approximately 1000-fold. More recently, we optimized these PBD-ligand interactions using an oxime ligation-based strategy. Herein, using azide-alkyne cycloaddition reactions, we explore new triazole-containing PBD-binding antagonists. Some of these ligands retain the high PBD-binding affinity of the parent peptide, while showing desirable enhanced selectivity for the PBD of Plk1 relative to the PBDs of Plk2 and Plk3.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Rubner S, Schubert S, Berg T. Poloxin-2HT+: changing the hydrophobic tag of Poloxin-2HT increases Plk1 degradation and apoptosis induction in tumor cells. Org Biomol Chem 2019; 17:3113-3117. [PMID: 30848278 DOI: 10.1039/c9ob00080a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the hydrophobically-tagged Plk1 PBD inhibitor Poloxin-2HT+, which selectively degrades the tumor target Plk1 and induces apoptosis in human tumor cells with higher potency than the hydrophobically-tagged inhibitor Poloxin-2HT. Our data provide further evidence that hydrophobically tagged inhibitors of protein-protein interactions can target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
17
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo-like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo-Box Domain. Angew Chem Int Ed Engl 2018; 57:17043-17047. [PMID: 30351497 DOI: 10.1002/anie.201809640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Hydrophobic tagging (HT) of bioactive compounds can induce target degradation via the proteasomal pathway. The first application of hydrophobic tagging to an existing inhibitor of protein-protein interactions is now presented. We developed Poloxin-2HT by fusing an adamantyl tag to Poloxin-2, an inhibitor of the polo-box domain of the protein kinase Plk1, which is a target for tumor therapy. Poloxin-2HT selectively reduced the protein levels of Plk1 in HeLa cells and had a significantly stronger effect on cell viability and the induction of apoptosis than the untagged PBD inhibitor Poloxin-2. The change in cellular phenotype associated with the addition of the hydrophobic tag to Poloxin-2 demonstrated that Poloxin-2HT targets Plk1 in living cells. Our data validate hydrophobic tagging of selective inhibitors of protein-protein interactions as a novel strategy to target and destroy disease-relevant proteins.
Collapse
Affiliation(s)
- Stefan Rubner
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Andrej Scharow
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sabine Schubert
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
18
|
Rubner S, Scharow A, Schubert S, Berg T. Selective Degradation of Polo‐like Kinase 1 by a Hydrophobically Tagged Inhibitor of the Polo‐Box Domain. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stefan Rubner
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Andrej Scharow
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Sabine Schubert
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Thorsten Berg
- Leipzig University Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
19
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
20
|
A practical chromatography-free synthesis of a 5,6-dihydroimidazolo[1,5-f]pteridine derivative as a polo-like kinase-1 inhibitor. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Ghanakota P, van Vlijmen H, Sherman W, Beuming T. Large-Scale Validation of Mixed-Solvent Simulations to Assess Hotspots at Protein–Protein Interaction Interfaces. J Chem Inf Model 2018; 58:784-793. [PMID: 29617116 DOI: 10.1021/acs.jcim.7b00487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Phani Ghanakota
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | | | - Woody Sherman
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, New York 10036, United States
| |
Collapse
|
22
|
Zhan MM, Yang Y, Luo J, Zhang XX, Xiao X, Li S, Cheng K, Xie Z, Tu Z, Liao C. Design, synthesis, and biological evaluation of novel highly selective polo-like kinase 2 inhibitors based on the tetrahydropteridin chemical scaffold. Eur J Med Chem 2017; 143:724-731. [PMID: 29220793 DOI: 10.1016/j.ejmech.2017.11.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Polo-like kinase 2 (Plk2) is a potential target for the treatment of cancer, which displays an important role in tumor cell proliferation and survival. In this report, according to the analysis of critical amino acid residue differences among Plk1, Plk2 and Plk3, and structure-based drug design strategies, two novel series of selective Plk2 inhibitors based on tetrahydropteridin chemical scaffold were designed and synthesized to target two specific residues, Lys86 and Tyr161 of Plk2. All compounds were evaluated for their inhibitory activity against Plk1-Plk3 and the cellular inhibition activity on six different human cancer cell lines. All efforts led to the identification of the most potent compounds C2 (3.40 nM against Plk2) and C21 (4.88 nM against Plk2) from the first and second series of selective Plk2 inhibitors respectively. Additionally, the selectivity of C21 over Plk1/3 was significantly increased with the selectivity indexes of 12.57 and 910.06. Moreover, most of our compounds exhibited antitumor activity in the nanomolar range in the MTT assay, indicating that our compounds, especially C2 and C21 could be promising Plk2 inhibitors for further anticancer research.
Collapse
Affiliation(s)
- Mei-Miao Zhan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yang Yang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinfeng Luo
- High Throughput Drug Screening Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, PR China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, PR China
| | - Xing-Xing Zhang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xuan Xiao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Shiyu Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kai Cheng
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Zhouling Xie
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Zhengchao Tu
- High Throughput Drug Screening Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, PR China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, PR China.
| | - Chenzhong Liao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
23
|
Zhao XZ, Hymel D, Burke TR. Enhancing polo-like kinase 1 selectivity of polo-box domain-binding peptides. Bioorg Med Chem 2017; 25:5041-5049. [PMID: 28285924 PMCID: PMC5573662 DOI: 10.1016/j.bmc.2017.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
An important goal in the development of polo-like kinase 1 (Plk1) polo-box domain (PBD) binding inhibitors is selectivity for Plk1 relative to Plk2 and Plk3. In our current work we show that Plk1 PBD selectivity can be significantly enhanced by modulating interactions within a previously discovered "cryptic pocket" and a more recently identified proximal "auxiliary pocket."
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.
| |
Collapse
|
24
|
Cirillo L, Thomas Y, Pintard L, Gotta M. BORA-dependent PLK1 regulation: A new weapon for cancer therapy? Mol Cell Oncol 2016; 3:e1199265. [PMID: 27857970 PMCID: PMC5068183 DOI: 10.1080/23723556.2016.1199265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/16/2022]
Abstract
The mitotic kinase polo like kinase 1 (PLK1) is overexpressed in many cancers and its inhibition slows down proliferation and increases apoptosis in cancer cell lines. Understanding how PLK1 is activated is therefore crucial for the development of novel PLK1 inhibitors with anticancer properties. We recently identified a conserved regulatory loop leading to PLK1 activation that involves cyclin-dependent kinase 1 (CDK1).
Collapse
Affiliation(s)
- Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| | - Yann Thomas
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Center National de la Recherche Scientifique , Paris, France
| | - Lionel Pintard
- Jacques Monod Institute, UMR7592, Paris-Diderot University, Center National de la Recherche Scientifique , Paris, France
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| |
Collapse
|