1
|
Cao S, Zhang H, Chen M, Zhu N, Zhan B, Xu P, Chen X, Yu B, Zhang X. Regiodivergent Functionalization of Protected and Unprotected Carbohydrates using Photoactive 4-Tetrafluoropyridinylthio Fragment as an Adaptive Activating Group. Angew Chem Int Ed Engl 2024; 63:e202412436. [PMID: 39206505 PMCID: PMC11656145 DOI: 10.1002/anie.202412436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The selective functionalization of carbohydrates holds a central position in synthetic carbohydrate chemistry, driving the ongoing quest for ideal approaches to manipulate these compounds. In this study, we introduce a general strategy that enables the regiodivergent functionalization of saccharides. The use of electron-deficient photoactive 4-tetrafluoropyridinylthio (SPyf) fragment as an adaptable activating group, facilitated efficient functionalization across all saccharide sites. More importantly, this activating group can be directly installed at the C1, C5 and C6 positions of biomass-derived carbohydrates in a single step and in a site-selective manner, allowing for the efficient and precision-oriented modification of unprotected saccharides and glycans.
Collapse
Affiliation(s)
- Shen Cao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Haobo Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Niming Zhu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub-lane XiangshanHangzhou310024P. R. China
| |
Collapse
|
2
|
Krömer M, Poštová Slavětínská L, Hocek M. Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove. Chemistry 2024; 30:e202402318. [PMID: 38896019 DOI: 10.1002/chem.202402318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
3
|
Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR, Luscombe CK. Organic building blocks at inorganic nanomaterial interfaces. MATERIALS HORIZONS 2022; 9:61-87. [PMID: 34851347 DOI: 10.1039/d1mh01294k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Theodore A Cohen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Breena M Sperry
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Micaela K Homer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Laura M Jacoby
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
6
|
Qiao M, Zhang L, Jiao R, Zhang S, Li B, Zhang X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abstract
Labeling of nucleic acids is required for many studies aiming to elucidate their functions and dynamics in vitro and in cells. Out of the numerous labeling concepts that have been devised, covalent labeling provides the most stable linkage, an unrivaled choice of small and highly fluorescent labels and - thanks to recent advances in click chemistry - an incredible versatility. Depending on the approach, site-, sequence- and cell-specificity can be achieved. DNA and RNA labeling are rapidly developing fields that bring together multiple areas of research: on the one hand, synthetic and biophysical chemists develop new fluorescent labels and isomorphic nucleobases as well as faster and more selective bioorthogonal reactions. On the other hand, the number of enzymes that can be harnessed for post-synthetic and site-specific labeling of nucleic acids has increased significantly. Together with protein engineering and genetic manipulation of cells, intracellular and cell-specific labeling has become possible. In this review, we provide a structured overview of covalent labeling approaches for nucleic acids and highlight notable developments, in particular recent examples. The majority of this review will focus on fluorescent labeling; however, the principles can often be readily applied to other labels. We will start with entirely chemical approaches, followed by chemo-enzymatic strategies and ribozymes, and finish with metabolic labeling of nucleic acids. Each section is subdivided into direct (or one-step) and two-step labeling approaches and will start with DNA before treating RNA.
Collapse
Affiliation(s)
- Nils Klöcker
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, D-48149 Münster, Germany.
| | | | | |
Collapse
|
8
|
Fairbanks AJ. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr Res 2020; 499:108197. [PMID: 33256953 DOI: 10.1016/j.carres.2020.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
2-Chloro-1,3-dimethylimidazolinium chloride (DMC, herein also referred to as Shoda's reagent) and its derivatives are useful for numerous synthetic transformations in which the anomeric centre of unprotected reducing sugars is selectively activated in aqueous solution. As such unprotected sugars can undergo anomeric substitution with a range of added nucleophiles, providing highly efficient routes to a range of glycosides and glycoconjugates without the need for traditional protecting group manipulations. This mini-review summarizes the development of DMC and some of its derivatives/analogues, and highlights recent applications for protecting group-free synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
9
|
Miguel‐Ávila J, Tomás‐Gamasa M, Mascareñas JL. Intracellular Ruthenium-Promoted (2+2+2) Cycloadditions. Angew Chem Int Ed Engl 2020; 59:17628-17633. [PMID: 32627920 PMCID: PMC7689831 DOI: 10.1002/anie.202006689] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Metal-mediated intracellular reactions are becoming invaluable tools in chemical and cell biology, and hold promise for strongly impacting the field of biomedicine. Most of the reactions reported so far involve either uncaging or redox processes. Demonstrated here for the first time is the viability of performing multicomponent alkyne cycloaromatizations inside live mammalian cells using ruthenium catalysts. Both fully intramolecular and intermolecular cycloadditions of diynes with alkynes are feasible, the latter providing an intracellular synthesis of appealing anthraquinones. The power of the approach is further demonstrated by generating anthraquinone AIEgens (AIE=aggregation induced emission) that otherwise do not go inside cells, and by modifying the intracellular distribution of the products by simply varying the type of ruthenium complex.
Collapse
Affiliation(s)
- Joan Miguel‐Ávila
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiagode CompostelaSpain
| |
Collapse
|
10
|
|
11
|
|
12
|
Inoue N, Onoda A, Hayashi T. Site-Specific Modification of Proteins through N-Terminal Azide Labeling and a Chelation-Assisted CuAAC Reaction. Bioconjug Chem 2019; 30:2427-2434. [DOI: 10.1021/acs.bioconjchem.9b00515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nozomu Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
13
|
Noguchi M. Transformation of Hemiacetal Hydroxy Groups in Free Saccharides Using a Formamidinium-type Electrophile. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1940.2sj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Noguchi M. Transformation of Hemiacetal Hydroxy Groups in Free Saccharides Using a Formamidinium-type Electrophile. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1940.2se] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Tatina MB, Khong DT, Judeh ZMA. Efficient Synthesis of α-Glycosyl Chlorides Using 2-Chloro-1,3-dimethylimidazolinium Chloride: A Convenient Protocol for Quick One-Pot Glycosylation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Duc Thinh Khong
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| |
Collapse
|
16
|
Sallustrau A, Bregant S, Chollet C, Audisio D, Taran F. Scalable and practical synthesis of clickable Cu-chelating azides. Chem Commun (Camb) 2018; 53:7890-7893. [PMID: 28597902 DOI: 10.1039/c7cc03247a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A convenient and effective synthetic access to chelating azides was designed enabling the preparation of efficient clickable fluorescent derivatives. The comparison of the reactivity of these chelating azides to regular azides showcased the striking superiority of such derivatives for labeling applications.
Collapse
Affiliation(s)
- A Sallustrau
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
17
|
Miguel-Ávila J, Tomás-Gamasa M, Olmos A, Pérez PJ, Mascareñas JL. Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells. Chem Sci 2018; 9:1947-1952. [PMID: 29675241 PMCID: PMC5892125 DOI: 10.1039/c7sc04643j] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.
Collapse
Affiliation(s)
- Joan Miguel-Ávila
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Andrea Olmos
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea , Unidad Asociada al CSIC , CIQSO-Centro de Investigación en Química Sostenible , Departamento de Química , Universidad de Huelva , Campus de El Carmen s/n , 21007 Huelva , Spain .
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
18
|
Alexander SR, Williams GM, Brimble MA, Fairbanks AJ. A double-click approach to the protecting group free synthesis of glycoconjugates. Org Biomol Chem 2018; 16:1258-1262. [DOI: 10.1039/c8ob00072g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of a bi-functional linker, containing an alkyne and an alkene, allows the protecting group free conjugation of reducing sugars to thiols via a double click process.
Collapse
Affiliation(s)
- S. R. Alexander
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - G. M. Williams
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - M. A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - A. J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
19
|
Zhao T, Li T, Liu Y. Silver nanoparticle plasmonic enhanced förster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. NANOSCALE 2017; 9:9841-9847. [PMID: 28485436 DOI: 10.1039/c7nr01562c] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A large amount of proteins are post-translationally modified with a sialic acid terminal oligosaccharide, and sialylation directly affects the function of glycoproteins and adjusts relevant biological processes. Herein, we developed a method for imaging analysis of protein-specific sialylation on the cell surface via silver nanoparticle (AgNPs) plasmonic enhanced Förster resonance energy transfer (FRET). In this strategy, the target monosaccharide was labelled with the FRET acceptor of Cy5 via bioorthogonal chemistry. In addition, aptamer linked AgNPs were combined with the Cy3 fluorophore by DNA hybridization as the FRET donor probe, which could be conjugated to the target glycoprotein based on specific aptamer-protein recognition. The Cy5 fluorescence signal was obtained under the Cy3 excitation wavelength via FRET. Moreover, the FRET fluorescence signal was obviously enhanced owing to the plasmonic effect of AgNPs at an appropriate distance to Cy3 on the cell surface. Hence, the protein-specific sialic acids were detected with high contrast. The results showed that the AgNP plasmonic enhanced FRET method was not only superior to the bare FRET method but also can be used to evaluate the expression of sialoglycoproteins in different cell types under pharmacological treatments. The AgNP plasmonic enhanced FRET method provides a valuable tool in the research of glycan metabolism biological processes, the active site of glycoproteins and drug screening.
Collapse
Affiliation(s)
- Tingbi Zhao
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
20
|
Zhang X, Liu P, Zhu L. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. Molecules 2016; 21:molecules21121697. [PMID: 27941684 PMCID: PMC6274337 DOI: 10.3390/molecules21121697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022] Open
Abstract
This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II)- (via an induction period) and copper(I)-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethyl)propargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II)- and copper(I)-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Peiye Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA.
| |
Collapse
|