1
|
Aguirre Rivera J, Mao G, Sabantsev A, Panfilov M, Hou Q, Lindell M, Chanez C, Ritort F, Jinek M, Deindl S. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 2024; 385:892-898. [PMID: 39172826 DOI: 10.1126/science.adn5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Collapse
Affiliation(s)
- J Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - G Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - A Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Q Hou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Lindell
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - C Chanez
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Jinek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - S Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
2
|
Kuo YA, Chen YI, Wang Y, Korkmaz Z, Yonas S, He Y, Nguyen TD, Hong S, Nguyen AT, Kim S, Seifi S, Fan PH, Wu Y, Yang Z, Liu HW, Lu Y, Ren P, Yeh HC. Fluorogenic Aptamer Optimizations on a Massively Parallel Sequencing Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602435. [PMID: 39026723 PMCID: PMC11257435 DOI: 10.1101/2024.07.07.602435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.
Collapse
|
3
|
Porebski BT, Balmforth M, Browne G, Riley A, Jamali K, Fürst MJLJ, Velic M, Buchanan A, Minter R, Vaughan T, Holliger P. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat Biomed Eng 2024; 8:214-232. [PMID: 37814006 PMCID: PMC10963267 DOI: 10.1038/s41551-023-01093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Developing therapeutic antibodies is laborious and costly. Here we report a method for antibody discovery that leverages the Illumina HiSeq platform to, within 3 days, screen in the order of 108 antibody-antigen interactions. The method, which we named 'deep screening', involves the clustering and sequencing of antibody libraries, the conversion of the DNA clusters into complementary RNA clusters covalently linked to the instrument's flow-cell surface on the same location, the in situ translation of the clusters into antibodies tethered via ribosome display, and their screening via fluorescently labelled antigens. By using deep screening, we discovered low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants from yeast-display-enriched libraries, and high-picomolar single-chain antibody fragment leads for human interleukin-7 directly from unselected synthetic repertoires. We also leveraged deep screening of a library of 2.4 × 105 sequences of the third complementarity-determining region of the heavy chain of an anti-human epidermal growth factor receptor 2 (HER2) antibody as input for a large language model that generated new single-chain antibody fragment sequences with higher affinity for HER2 than those in the original library.
Collapse
Affiliation(s)
| | | | | | - Aidan Riley
- Biologics Engineering, AstraZeneca, Cambridge, UK
| | | | - Maximillian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | - Ralph Minter
- Biologics Engineering, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics, London, UK
| | | | | |
Collapse
|
4
|
Li Y, Lan Y, Zheng X, Zhao Y. Insights into Wavelength-Mediated Excited State Intramolecular Proton Transfer in Solution: UV Resonance Raman Spectroscopy and Theoretical Calculation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Severins I, Joo C, van Noort J. Exploring molecular biology in sequence space: The road to next-generation single-molecule biophysics. Mol Cell 2022; 82:1788-1805. [PMID: 35561688 DOI: 10.1016/j.molcel.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Next-generation sequencing techniques have led to a new quantitative dimension in the biological sciences. In particular, integrating sequencing techniques with biophysical tools allows sequence-dependent mechanistic studies. Using the millions of DNA clusters that are generated during sequencing to perform high-throughput binding affinity and kinetics measurements enabled the construction of energy landscapes in sequence space, uncovering relationships between sequence, structure, and function. Here, we review the approaches to perform ensemble fluorescence experiments on next-generation sequencing chips for variations of DNA, RNA, and protein sequences. As the next step, we anticipate that these fluorescence experiments will be pushed to the single-molecule level, which can directly uncover kinetics and molecular heterogeneity in an unprecedented high-throughput fashion. Molecular biophysics in sequence space, both at the ensemble and single-molecule level, leads to new mechanistic insights. The wide spectrum of applications in biology and medicine ranges from the fundamental understanding of evolutionary pathways to the development of new therapeutics.
Collapse
Affiliation(s)
- Ivo Severins
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands.
| |
Collapse
|
6
|
Pandit K, Petrescu J, Cuevas M, Stephenson W, Smibert P, Phatnani H, Maniatis S. An open source toolkit for repurposing Illumina sequencing systems as versatile fluidics and imaging platforms. Sci Rep 2022; 12:5081. [PMID: 35332182 PMCID: PMC8948189 DOI: 10.1038/s41598-022-08740-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Fluorescence microscopy is a key method in the life sciences. State of the art -omics methods combine fluorescence microscopy with complex protocols to visualize tens to thousands of features in each of millions of pixels across samples. These -omics methods require precise control of temperature, reagent application, and image acquisition parameters during iterative chemistry and imaging cycles conducted over the course of days or weeks. Automated execution of such methods enables robust and reproducible data generation. However, few commercial solutions exist for temperature controlled, fluidics coupled fluorescence imaging, and implementation of bespoke instrumentation requires specialized engineering expertise. Here we present PySeq2500, an open source Python code base and flow cell design that converts the Illumina HiSeq 2500 instrument, comprising an epifluorescence microscope with integrated fluidics, into an open platform for programmable applications without need for specialized engineering or software development expertise. Customizable PySeq2500 protocols enable experimental designs involving simultaneous 4-channel image acquisition, temperature control, reagent exchange, stable positioning, and sample integrity over extended experiments. To demonstrate accessible automation of complex, multi-day workflows, we use the PySeq2500 system for unattended execution of iterative indirect immunofluorescence imaging (4i). Our automated 4i method uses off-the-shelf antibodies over multiple cycles of staining, imaging, and antibody elution to build highly multiplexed maps of cell types and pathological features in mouse and postmortem human spinal cord sections. Given the widespread availability of HiSeq 2500 platforms and the simplicity of the modifications required to repurpose these systems, PySeq2500 enables non-specialists to develop and implement state of the art fluidics coupled imaging methods in a widely available benchtop system.
Collapse
Affiliation(s)
- Kunal Pandit
- Technology Innovation Lab, New York Genome Center, New York, NY, USA.
| | - Joana Petrescu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Miguel Cuevas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Hemali Phatnani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA.
| | - Silas Maniatis
- Technology Innovation Lab, New York Genome Center, New York, NY, USA.
| |
Collapse
|
7
|
Drees A, Fischer M. High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers. Int J Mol Sci 2021; 22:9202. [PMID: 34502110 PMCID: PMC8431662 DOI: 10.3390/ijms22179202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers feature a number of advantages, compared to antibodies. However, their application has been limited so far, mainly because of the complex selection process. 'High-throughput sequencing fluorescent ligand interaction profiling' (HiTS-FLIP) significantly increases the selection efficiency and is consequently a very powerful and versatile technology for the selection of high-performance aptamers. It is the first experiment to allow the direct and quantitative measurement of the affinity and specificity of millions of aptamers simultaneously by harnessing the potential of optical next-generation sequencing platforms to perform fluorescence-based binding assays on the clusters displayed on the flow cells and determining their sequence and position in regular high-throughput sequencing. Many variants of the experiment have been developed that allow automation and in situ conversion of DNA clusters into base-modified DNA, RNA, peptides, and even proteins. In addition, the information from mutational assays, performed with HiTS-FLIP, provides deep insights into the relationship between the sequence, structure, and function of aptamers. This enables a detailed understanding of the sequence-specific rules that determine affinity, and thus, supports the evolution of aptamers. Current variants of the HiTS-FLIP experiment and its application in the field of aptamer selection, characterisation, and optimisation are presented in this review.
Collapse
Affiliation(s)
- Alissa Drees
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
9
|
Longwell SA, Fordyce PM. micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output. LAB ON A CHIP 2020; 20:93-106. [PMID: 31701110 PMCID: PMC6923132 DOI: 10.1039/c9lc00512a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic devices are an enabling technology for many labs, facilitating a wide range of applications spanning high-throughput encapsulation, molecular separations, and long-term cell culture. In many cases, however, their utility is limited by a 'world-to-chip' barrier that makes it difficult to serially interface samples with these devices. As a result, many researchers are forced to rely on low-throughput, manual approaches for managing device input and output (IO) of samples, reagents, and effluent. Here, we present a hardware-software platform for automated microfluidic IO (micrIO). The platform, which is uniquely compatible with positive-pressure microfluidics, comprises an 'AutoSipper' for input and a 'Fraction Collector' for output. To facilitate widespread adoption, both are open-source builds constructed from components that are readily purchased online or fabricated from included design files. The software control library, written in Python, allows the platform to be integrated with existing experimental setups and to coordinate IO with other functions such as valve actuation and assay imaging. We demonstrate these capabilities by coupling both the AutoSipper and Fraction Collector to two microfluidic devices: a simple, valved inlet manifold and a microfluidic droplet generator that produces beads with distinct spectral codes. Analysis of the collected materials in each case establishes the ability of the platform to draw from and output to specific wells of multiwell plates with negligible cross-contamination between samples.
Collapse
Affiliation(s)
- Scott A Longwell
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA. and Department of Genetics, Stanford University, Stanford, CA, USA and ChEM-H Institute, Stanford University, Stanford, CA, USA and Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
10
|
Mamet N, Harari G, Zamir A, Bachelet I. Simulating the Monty Hall problem in a DNA sequencing machine. Comput Biol Chem 2019; 83:107122. [DOI: 10.1016/j.compbiolchem.2019.107122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/04/2019] [Accepted: 09/04/2019] [Indexed: 02/04/2023]
|
11
|
Layton CJ, McMahon PL, Greenleaf WJ. Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip. Mol Cell 2019; 73:1075-1082.e4. [PMID: 30849388 DOI: 10.1016/j.molcel.2019.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/18/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
Abstract
High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.
Collapse
Affiliation(s)
- Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter L McMahon
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan-Zuckerberg Initiative, Palo Alto, CA 94301, USA.
| |
Collapse
|
12
|
|
13
|
Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads. Curr Opin Chem Biol 2017; 38:52-61. [DOI: 10.1016/j.cbpa.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
|
14
|
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 2017; 234:4-20. [PMID: 28163093 PMCID: PMC5476519 DOI: 10.1016/j.virusres.2017.01.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.
Collapse
Affiliation(s)
- Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|