1
|
Schneider A, Lystbæk TB, Markthaler D, Hansen N, Hauer B. Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis. Nat Commun 2024; 15:4925. [PMID: 38858373 PMCID: PMC11165016 DOI: 10.1038/s41467-024-48993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.
Collapse
Affiliation(s)
- Andreas Schneider
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Thomas B Lystbæk
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Daniel Markthaler
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Stuttgart-Vaihingen, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany.
| |
Collapse
|
2
|
Ludwig J, Curado-Carballada C, Hammer SC, Schneider A, Diether S, Kress N, Ruiz-Barragán S, Osuna S, Hauer B. Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene-Hopene Cyclases. Angew Chem Int Ed Engl 2024; 63:e202318913. [PMID: 38270537 DOI: 10.1002/anie.202318913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene-hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)-β-pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)-borneol selectivity from 1 % to >90 % (>99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target-oriented skeletal reorganization of broadly abundant terpenes.
Collapse
Affiliation(s)
- Julian Ludwig
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Christian Curado-Carballada
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Stephan C Hammer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andreas Schneider
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Svenja Diether
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Nico Kress
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sergi Ruiz-Barragán
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- Departament de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Spain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Schell K, Li H, Lauterbach L, Taizoumbe KA, Dickschat JS, Hauer B. Alternative Active Site Confinement in Squalene–Hopene Cyclase Enforces Substrate Preorganization for Cyclization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Eichenberger M, Hüppi S, Patsch D, Aeberli N, Berweger R, Dossenbach S, Eichhorn E, Flachsmann F, Hortencio L, Voirol F, Vollenweider S, Bornscheuer UT, Buller R. Asymmetric Cation-Olefin Monocyclization by Engineered Squalene-Hopene Cyclases. Angew Chem Int Ed Engl 2021; 60:26080-26086. [PMID: 34346556 PMCID: PMC9290348 DOI: 10.1002/anie.202108037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Indexed: 12/31/2022]
Abstract
Squalene-hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes' strict (S)-enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio-complementary access to valuable monocyclic terpenoids, an SHC-wild-type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)-γ-dihydroionone from (E/Z)-geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)-isomer yielded the desired monocyclic (R)-γ-dihydroionone (>99 % ee), the (E)-isomer was converted to the (S,S)-bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC-substrate pair, access to the complementary (S)-γ-dihydroionone (>99.9 % ee) could be obtained.
Collapse
Affiliation(s)
- Michael Eichenberger
- Zurich University of Applied SciencesLife Sciences and Facility ManagementEinsiedlerstrasse 318820WädenswilSwitzerland
| | - Sean Hüppi
- Zurich University of Applied SciencesLife Sciences and Facility ManagementEinsiedlerstrasse 318820WädenswilSwitzerland
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - David Patsch
- Zurich University of Applied SciencesLife Sciences and Facility ManagementEinsiedlerstrasse 318820WädenswilSwitzerland
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Natalie Aeberli
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Raphael Berweger
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Sandro Dossenbach
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Eric Eichhorn
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Felix Flachsmann
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Lucas Hortencio
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Francis Voirol
- Fragrances S&TIngredients ResearchGivaudan Schweiz AGKemptpark 508310KemptthalSwitzerland
| | - Sabine Vollenweider
- Science & TechnologyGivaudan International SAKemptpark 508310KemptthalSwitzerland
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Rebecca Buller
- Zurich University of Applied SciencesLife Sciences and Facility ManagementEinsiedlerstrasse 318820WädenswilSwitzerland
| |
Collapse
|
5
|
Eichenberger M, Hüppi S, Patsch D, Aeberli N, Berweger R, Dossenbach S, Eichhorn E, Flachsmann F, Hortencio L, Voirol F, Vollenweider S, Bornscheuer UT, Buller R. Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Eichenberger
- Zurich University of Applied Sciences Life Sciences and Facility Management Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Sean Hüppi
- Zurich University of Applied Sciences Life Sciences and Facility Management Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - David Patsch
- Zurich University of Applied Sciences Life Sciences and Facility Management Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Greifswald University Felix-Hausdorff-Strasse 4 17487 Greifswald Germany
| | - Natalie Aeberli
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Raphael Berweger
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Sandro Dossenbach
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Eric Eichhorn
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Felix Flachsmann
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Lucas Hortencio
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Francis Voirol
- Fragrances S&T Ingredients Research Givaudan Schweiz AG Kemptpark 50 8310 Kemptthal Switzerland
| | - Sabine Vollenweider
- Science & Technology Givaudan International SA Kemptpark 50 8310 Kemptthal Switzerland
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Greifswald University Felix-Hausdorff-Strasse 4 17487 Greifswald Germany
| | - Rebecca Buller
- Zurich University of Applied Sciences Life Sciences and Facility Management Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
6
|
Henche S, Nestl BM, Hauer B. Enzymatic Friedel‐Crafts Alkylation Using Squalene‐Hopene Cyclases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sabrina Henche
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| | | | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry Universitaet Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
7
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Affiliation(s)
- Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Liu Z, Zhang Y, Sun J, Huang WC, Xue C, Mao X. A Novel Soluble Squalene-Hopene Cyclase and Its Application in Efficient Synthesis of Hopene. Front Bioeng Biotechnol 2020; 8:426. [PMID: 32478051 PMCID: PMC7232578 DOI: 10.3389/fbioe.2020.00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Hopene is an important precursor for synthesizing bioactive hopanoids with great commercial value. However, the chemical methods for synthesizing hopene are not efficient to date. Hopene is commonly obtained by extracting from plants or bacteria like other terpenoids, but the complicated extraction process is inefficient and unfriendly to the environment. Hopene can be biological synthesized by squalene-hopene cyclase (SHC) from squalene. However, hopene production by SHC remained at a low level until now. In this work, we found a novel SHC named OUC-SaSHC from Streptomyces albolongus ATCC 27414. An easy procedure for expression and purification of OUC-SaSHC was established. The conditions for OUC-SaSHC to convert squalene into hopene are optimized as in 100 mM sodium phosphate buffer (pH 7.0) containing 0.5% Tween 80, 20 mM squalene and 0.14 mg/mL OUC-SaSHC at 30°C. In the scale-up reaction with the final volume of 100 mL, the yield of squalene could be up to 99% at 36 h, and 8.07 mg/mL hopene was produced. Our work showed a great potential of OUC-SaSHC as biocatalyst on scale-up production of hopene, hence improves the SHC-catalyzing enzyme synthesis of hopene from laboratory level to application level.
Collapse
Affiliation(s)
- Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yinan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wen-Can Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Farhat W, Stamm A, Robert-Monpate M, Biundo A, Syrén PO. Biocatalysis for terpene-based polymers. ACTA ACUST UNITED AC 2019; 74:91-100. [PMID: 30789828 DOI: 10.1515/znc-2018-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Arne Stamm
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Maxime Robert-Monpate
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Antonino Biundo
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Per-Olof Syrén
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden.,Wallenberg Wood Science Center, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
11
|
Fukuda Y, Watanabe T, Hoshino T. Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene. Org Biomol Chem 2019; 16:8365-8378. [PMID: 30209480 DOI: 10.1039/c8ob02009d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Squalene-hopene cyclase (SHC) catalyzes the conversion of acyclic squalene molecule into a 6,6,6,6,5-fused pentacyclic hopene and hopanol. SHC is also able to convert (3S)-2,3-oxidosqualene into 3β-hydroxyhopene and 3β-hydroxyhopanol and can generate 3α-hydroxyhopene and 3α-hydroxyhopanol from (3R)-2,3-oxidosqualene. Functional analyses of active site residues toward the squalene cyclization reaction have been extensively reported, but investigations of the cyclization reactions of (3R,S)-oxidosqualene by SHC have rarely been reported. The cyclization reactions of oxidosqualene with W169X, G600F/F601G and F601G/P602F were examined. The variants of the W169L generated new triterpene skeletons possessing a 7-oxabicyclo[2.2.1]heptane moiety (oxygen-bridged monocycle) with (1S,2S,4R)- and (1R,2S,4S)-stereochemistry, which were produced from (3R)- and (3S)-oxidosqualenes, respectively. The F601G/P602F double mutant also furnished a novel triterpene, named neogammacer-21(22)-en-3β-ol, consisting of a 6,6,6,6,6-fused pentacyclic system, in which Me-29 at C-22 of the gammacerane skeleton migrated to C-21. We propose to name this novel scaffold neogammacerane. The formation mechanisms of the enzymatic products from 2,3-oxidosqualene are discussed.
Collapse
Affiliation(s)
- Yoriyuki Fukuda
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | | | | |
Collapse
|
12
|
Nakano C, Watanabe T, Minamino M, Hoshino T. Enzymatic syntheses of novel carbocyclic scaffolds with a 6,5 + 5,5 ring system by squalene-hopene cyclase. Org Biomol Chem 2019; 17:9375-9389. [DOI: 10.1039/c9ob01941c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel scaffold with a 6,5 + 5, 5 ring system (allodammarane) was synthesized from 27-norsqualene (13a), 3R-(18) and 3S-27-noroxidosqualenes (19).
Collapse
Affiliation(s)
- Chiaki Nakano
- Department of Applied Biological Chemistry
- Faculty of Agriculture
- and Graduate School of Science and Technology
- Niigata University
- Niigata
| | - Takumi Watanabe
- Department of Applied Biological Chemistry
- Faculty of Agriculture
- and Graduate School of Science and Technology
- Niigata University
- Niigata
| | - Mai Minamino
- Department of Applied Biological Chemistry
- Faculty of Agriculture
- and Graduate School of Science and Technology
- Niigata University
- Niigata
| | - Tsutomu Hoshino
- Department of Applied Biological Chemistry
- Faculty of Agriculture
- and Graduate School of Science and Technology
- Niigata University
- Niigata
| |
Collapse
|
13
|
Ideno N, Umeyama S, Watanabe T, Nakajima M, Sato T, Hoshino T. Alicyclobacillus acidocaldarius
Squalene‐Hopene Cyclase: The Critical Role of Steric Bulk at Ala306 and the First Enzymatic Synthesis of Epoxydammarane from 2,3‐Oxidosqualene. Chembiochem 2018; 19:1873-1886. [DOI: 10.1002/cbic.201800281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Natsumi Ideno
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| | - Shikou Umeyama
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| | - Takashi Watanabe
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| | - Mami Nakajima
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| | - Tsutomu Sato
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology andDepartment of Applied Biological ChemistryFaculty of AgricultureNiigata University Ikarashi 2–8050, Nishi-ku Niigata 950–2181 Japan
| |
Collapse
|
14
|
Kaneko I, Terasawa Y, Hoshino T. Squalene-Hopene Cyclase: Mechanistic Insights into the Polycyclization Cascades of Squalene Analogs Bearing Ethyl and Hydroxymethyl Groups at the C-2 and C-23 Positions. Chemistry 2018; 24:11139-11157. [DOI: 10.1002/chem.201801668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ikki Kaneko
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Yuri Terasawa
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|