1
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Yu X, Ma C, Wang W, Ge J, Wang Z, Lin J, Che Q, Zhang G, Zhu T, Li D. Genome Mining Reveals a UbiA-Type Prenyltransferase Access to Farnesylation of Diketopiperazines. Org Lett 2024; 26:3349-3354. [PMID: 38607994 DOI: 10.1021/acs.orglett.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.
Collapse
Affiliation(s)
- Xiaotian Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chuanteng Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wenxue Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Ge
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zian Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiaqi Lin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| |
Collapse
|
3
|
Han H, Peng S, Wang Q, Wang H, Wang P, Li C, Qi J, Liu C. Biochemical characterization of a multiple prenyltransferase from Tolypocladium inflatum. Appl Microbiol Biotechnol 2024; 108:275. [PMID: 38530470 PMCID: PMC10965706 DOI: 10.1007/s00253-024-13113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, β-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, β-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.
Collapse
Affiliation(s)
- Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Shuang Peng
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Qian Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Hongwei Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
4
|
Tang J, Matsuda Y. Functional analysis of transmembrane terpene cyclases involved in fungal meroterpenoid biosynthesis. Methods Enzymol 2024; 699:419-445. [PMID: 38942513 DOI: 10.1016/bs.mie.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Pyr4-family terpene cyclases are noncanonical transmembrane class II terpene cyclases that catalyze a variety of cyclization reactions in the biosynthesis of microbial terpenoids, such as meroterpenoids. However, although these cyclases are widely distributed in microorganisms, their three-dimensional structures have not been determined, possibly due to the transmembrane locations of these enzymes. In this chapter, we describe procedures for the functional analysis of transmembrane terpene cyclases based on their model structures generated using AlphaFold2. We used AdrI, the Pyr4-family terpene cyclase required for the biosynthesis of andrastin A and its homologs, as an example.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, P.R. China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, P.R. China.
| |
Collapse
|
5
|
Hibbard T, McLellan RM, Stevenson LJ, Richardson AT, Nicholson MJ, Parker EJ. Functional Crosstalk between Discrete Indole Terpenoid Gene Clusters in Tolypocladium album. Org Lett 2023; 25:7470-7475. [PMID: 37797949 PMCID: PMC10595974 DOI: 10.1021/acs.orglett.3c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/07/2023]
Abstract
Indole terpenoids make up a large group of secondary metabolites that display an enticing array of bioactivities. While indole diterpene (IDT) and rarely indole sesquiterpene (IST) pathways have been found individually in filamentous fungi, here we show that both cluster types are encoded within the genome of Tolypocladium album. Through heterologous reconstruction, we demonstrate the SES cluster encodes for IST biosynthesis and can tailor IDT substrates produced by the TER cluster.
Collapse
Affiliation(s)
- Taylor
R. Hibbard
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rose M. McLellan
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Luke J. Stevenson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alistair T. Richardson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Matthew J. Nicholson
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Wellington
UniVentures, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Emily J. Parker
- Ferrier
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
6
|
Ozaki T. Structural diversification of fungal natural products by oxidative enzymes. Biosci Biotechnol Biochem 2023; 87:809-818. [PMID: 37197900 DOI: 10.1093/bbb/zbad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Ascomycota and basidiomycota fungi are prolific producers of biologically active natural products. Fungal natural products exhibit remarkable structural diversity and complexity, which are generated by the enzymes involved in their biosynthesis. After the formation of core skeletons, oxidative enzymes play a critical role in converting them into mature natural products. Besides simple oxidations, more complex transformations, such as multiple oxidations by single enzymes, oxidative cyclization, and skeletal rearrangement, are often observed. Those oxidative enzymes are of significant interest for the identification of new enzyme chemistry and have the potential to be biocatalysts for the synthesis of complex molecules. This review presents selected examples of unique oxidative transformations that have been found in the biosynthesis of fungal natural products. The development of strategies for refactoring the fungal biosynthetic pathways with an efficient genome-editing method is also introduced.
Collapse
Affiliation(s)
- Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
7
|
Cadamuro RD, Bastos IMADS, de Freitas ACO, Rosa MDS, Costa GDO, da Silva IT, Robl D, Stoco PH, Sandjo LP, Treichel H, Steindel M, Fongaro G. Bioactivity Screening and Chemical Characterization of Biocompound from Endophytic Neofusicoccum parvum and Buergenerula spartinae Isolated from Mangrove Ecosystem. Microorganisms 2023; 11:1599. [PMID: 37375101 DOI: 10.3390/microorganisms11061599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 μg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.
Collapse
Affiliation(s)
- Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Ana Claudia Oliveira de Freitas
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Marilene da Silva Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | - Izabella Thaís da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Patricia Hermes Stoco
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700970, RS, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
8
|
Ozaki T, Minami A, Oikawa H. Biosynthesis of indole diterpenes: a reconstitution approach in a heterologous host. Nat Prod Rep 2023; 40:202-213. [PMID: 36321441 DOI: 10.1039/d2np00031h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 2013 to 2022In this review, we provide an overview elucidating the biosynthetic pathway and heterologous production of fungal indole diterpenes (IDTs). Based on the studies of six IDT biosynthesis, we extracted nature's strategy: (1) two-stage synthesis for the core scaffold and platform intermediates, and (2) late-stage modifications for installing an additional cyclic system on the indole ring. Herein, we describe reconstitution studies applying this strategy to the synthesis of highly elaborated IDTs. We also discuss its potential for future biosynthetic engineering.
Collapse
Affiliation(s)
- Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. .,Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
9
|
Niu J, Qi J, Wang P, Liu C, Gao JM. The chemical structures and biological activities of indole diterpenoids. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:3. [PMID: 36595079 PMCID: PMC9810782 DOI: 10.1007/s13659-022-00368-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Indole diterpenoids (IDTs) are an essential class of structurally diverse fungal secondary metabolites, that generally appear to be restricted to a limited number of fungi, such as Penicillium, Aspergillus, Claviceps, and Epichloe species, etc. These compounds share a typical core structure consisting of a cyclic diterpene skeleton of geranylgeranyl diphosphate (GGPP) and an indole ring moiety derived from indole-3-glycerol phosphate (IGP). 3-geranylgeranylindole (3-GGI) is the common precursor of all IDTs. On this basis, it is modified by cyclization, oxidation, and prenylation to generate a large class of compounds with complex structures. These compounds exhibit antibacterial, anti-insect, and ion channel inhibitory activities. We summarized 204 compounds of IDTs discovered from various fungi over the past 50 years, these compounds were reclassified, and their biological activities were summarized. This review will help to understand the structural diversity of IDTs and provide help for their physiological activities.
Collapse
Affiliation(s)
- Jingwen Niu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Liu Y, Ozaki T, Minami A, Oikawa H. Oxidative bicyclic ring system formation involving indole diterpene biosynthesis: Remarkable substrate tolerance of a prenyltransferase and flavoprotein oxidase. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Jiang L, Lv K, Zhu G, Lin Z, Zhang X, Xing C, Yang H, Zhang W, Wang Z, Liu C, Qu X, Hsiang T, Zhang L, Liu X. Norditerpenoids biosynthesized by variediene synthase-associated P450 machinery along with modifications by the host cell Aspergillus oryzae. Synth Syst Biotechnol 2022; 7:1142-1147. [PMID: 36101897 PMCID: PMC9440366 DOI: 10.1016/j.synbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The chemical diversity of terpenoids is typically established by terpene synthase-catalyzed cyclization and diversified by post-tailoring modifications. Fungal bifunctional terpene synthase (BFTS) associated P450 enzymes have shown significant catalytic potentials through the development of various new terpenoids with different biological activities. This study discovered the BFTS and its related gene cluster from the plant endophytic fungus Didymosphaeria variabile 17020. Heterologous expression of the BFTS in Saccharomyces cerevisiae resulted in the characterization of a major product diterpene variediene (1), along with two new minor products neovariediene and neoflexibilene. Further heterologous expression of the BFTS and one cytochrome P450 enzyme VndE (CYP6138B1) in Aspergillus oryzae NSAR1 led to the identification of seven norditerpenoids (19 carbons) with a structurally unique 5/5 bicyclic ring system. Interestingly, in vivo experiments suggested that the cyclized terpene variediene (1) was modified by VndE along with the endogenous enzymes from the host cell A. oryzae through serial chemical conversions, followed by multi-site hydroxylation via A. oryzae endogenous enzymes. Our work revealed that the two-enzymes biosynthetic system and host cell machinery could produce structurally unique terpenoids.
Collapse
|
12
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
13
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Biosynthesis of Indole Diterpene Lolitrems: Radical‐Induced Cyclization of an Epoxyalcohol Affording a Characteristic Lolitremane Skeleton. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Jiang Y, Ozaki T, Harada M, Miyasaka T, Sato H, Miyamoto K, Kanazawa J, Liu C, Maruyama J, Adachi M, Nakazaki A, Nishikawa T, Uchiyama M, Minami A, Oikawa H. Biosynthesis of Indole Diterpene Lolitrems: Radical‐Induced Cyclization of an Epoxyalcohol Affording a Characteristic Lolitremane Skeleton. Angew Chem Int Ed Engl 2020; 59:17996-18002. [DOI: 10.1002/anie.202007280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yulu Jiang
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Taro Ozaki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Tadachika Miyasaka
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Chengwei Liu
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Present address: College of Life Sciences Northeast Forestry University Harbin 150040 China
| | - Jun‐ichi Maruyama
- Department of Biotechnology Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3. Aoba, Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Atsushi Minami
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Hideaki Oikawa
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
16
|
Oikawa H. Reconstitution of biosynthetic machinery of fungal natural products in heterologous hosts. Biosci Biotechnol Biochem 2020; 84:433-444. [DOI: 10.1080/09168451.2019.1690976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Ascomycota and basidiomycota fungi are prolific sources of biologically active natural products. Recent genomic data and bioinformatic analysis indicate that fungi possess a large number of biosynthetic gene clusters for bioactive natural products but more than 90% are silent. Heterologous expression in the filamentous fungi as hosts is one of the powerful tools to expression of the silent gene clusters. This review introduces recent studies on the total biosynthesis of representative family members via common platform intermediates, genome mining of novel di- and sesterterpenoids including detailed cyclization pathway, and development of expression host for basidiomycota genes with efficient genome editing method. In addition, this review will discuss the several strategies, for the generation of structural diversity, which are found through these studies.
Collapse
Affiliation(s)
- Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Tanifuji R, Minami A, Oguri H, Oikawa H. Total synthesis of alkaloids using both chemical and biochemical methods. Nat Prod Rep 2020; 37:1098-1121. [DOI: 10.1039/c9np00073a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoenzymatic approach to synthesize structurally complex natural alkaloids (tetrahydroisoquinoline antibiotics, indole diterpenes, and monoterpene indole alkaloids) has been reviewed.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Atsushi Minami
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| | - Hiroki Oguri
- Department of Applied Chemistry
- Graduate School of Engineering
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Hideaki Oikawa
- Division of Chemistry
- Graduate School of Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|