1
|
Harmon TW, Lin Y, Sutton RT, Osborne SWJ, Seth Horne W. Interplay between C α Methylation and C α Stereochemistry in the Folding Energetics of a Helix-Rich Miniprotein. Chembiochem 2025; 26:e202401022. [PMID: 39791987 PMCID: PMC11907383 DOI: 10.1002/cbic.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
The α-helix is an abundant and functionally important element of protein secondary structure, which has motivated intensive efforts toward chemical strategies to stabilize helical folds. One such method is the incorporation of non-canonical backbone composition through an additional methyl substituent at the Cα atom. Examples of monomers include the achiral 2-aminoisobutyric acid (Aib) with geminal dimethyl substitution and chiral analogues with one methyl and one non-methyl substituent. While Aib and chiral Cα-Me residues are both established helix promoting moieties, their comparative ability in this regard has not been quantitatively investigated. Addressing this gap would help to inform the use of these building blocks in the construction of peptide and protein mimetics as well as provide fundamental insights into consequences of backbone methylation on folding. Here, we report a quantitative comparison of the impacts of Aib and chiral αMe residues on the high-resolution folded structure and folding thermodynamics of a small helical protein. These results reveal a synergistic stabilizing effect arising from the presence of Cα methylation in conjunction with a Cα stereocenter.
Collapse
Affiliation(s)
- Thomas W. Harmon
- Department of ChemistryUniversity of PittsburghPittsburgh, PA15260USA
| | - Yuhan Lin
- Department of ChemistryUniversity of PittsburghPittsburgh, PA15260USA
| | - Ryen T. Sutton
- Department of ChemistryUniversity of PittsburghPittsburgh, PA15260USA
| | | | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburgh, PA15260USA
| |
Collapse
|
2
|
Harmon TW, Song J, Gulewicz AJ, Di YP, Horne WS. Structural and Functional Mimicry of the Antimicrobial Defensin Plectasin by Analogues with Engineered Backbone Composition. Chembiochem 2025; 26:e202400951. [PMID: 39714882 PMCID: PMC11875557 DOI: 10.1002/cbic.202400951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that also exert antimicrobial activity via Lipid II binding. Made up entirely of canonical amino acids, these molecules are potentially more susceptible to degradation by protease enzymes than non-ribosomal counterparts. Here, we report the development of proteomimetic variants of plectasin through the systematic incorporation of artificial backbone connectivity in the domain. An iterative secondary-structure-based design scheme yields a variant with a tertiary fold indistinguishable from the prototype natural product, potent activity against Gram positive bacteria, and low mammalian cell toxicity. Backbone modification is shown to improve oxidative folding efficiency of the disulfide-rich scaffold as well as resistance to proteolytic hydrolysis. These results broaden the scope of design strategies toward protein mimetics as well as folds and biological functions possible in such agents.
Collapse
Affiliation(s)
- Thomas W. Harmon
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| | - Junming Song
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPA 15260USA
| | | | - Y. Peter Di
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPA 15260USA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| |
Collapse
|
3
|
Lin Y, Horne WS. Backbone Modification in a Protein Hydrophobic Core. Chemistry 2024; 30:e202401890. [PMID: 38753977 PMCID: PMC11345847 DOI: 10.1002/chem.202401890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites. Here, we report an examination of protein backbone modification targeted specifically to hydrophobic core positions and its impacts on tertiary folded structure and fold stability. Different artificial monomer types are placed at core, core-flanking, or solvent-exposed positions in a compact three-helix protein. Effects on structure and folding energetics are assessed by NMR spectroscopy and biophysical methods. Results show that artificial residues can be well accommodated in the hydrophobic core of a defined tertiary fold, with effects on stability only modestly larger than identical changes at solvent-exposed sites. Collectively, these results provide new insights into folding behavior of protein-like artificial chains as well as strategies for the design of such molecules.
Collapse
Affiliation(s)
- Yuhan Lin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Harmon TW, Horne WS. Protein Backbone Alteration in Non-Hairpin β-Turns: Impacts on Tertiary Folded Structure and Folded Stability. Chembiochem 2023; 24:e202300113. [PMID: 36920327 PMCID: PMC10239330 DOI: 10.1002/cbic.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/16/2023]
Abstract
The importance of β-turns to protein folding has motivated extensive efforts to stabilize the motif with non-canonical backbone connectivity. Prior work has focused almost exclusively on turns between strands in a β-sheet (i. e., hairpins). Turns in other structural contexts are also common in nature and have distinct conformational preferences; however, design principles for their mimicry remain poorly understood. Here, we report strategies that stabilize non-hairpin β-turns through systematic evaluation of the impacts of backbone alteration on the high-resolution folded structure and folded stability of a helix-loop-helix prototype protein. Several well-established hairpin turn mimetics are shown detrimental to folded stability and/or hydrophobic core packing, while less-explored modification schemes that reinforce alternate turn types lead to improved stability and more faithful structural mimicry. Collectively, these results have implications in control over protein folding through chemical modification as well as the design of protein mimetics.
Collapse
Affiliation(s)
- Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Rao SR, Harmon TW, Heath SL, Wolfe JA, Santhouse JR, O'Brien GL, Distefano AN, Reinert ZE, Horne WS. Chemical Shifts of Artificial Monomers Used to Construct Heterogeneous-Backbone Protein Mimetics in Random Coil and Folded States. Pept Sci (Hoboken) 2023; 115:e24297. [PMID: 37397503 PMCID: PMC10312354 DOI: 10.1002/pep2.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 03/03/2024]
Abstract
The construction of protein-sized synthetic chains that blend natural amino acids with artificial monomers to create so-called heterogeneous-backbones is a powerful approach to generate complex folds and functions from bio-inspired agents. A variety of techniques from structural biology commonly used to study natural proteins have been adapted to investigate folding in these entities. In NMR characterization of proteins, proton chemical shift is a straightforward to acquire, information-rich metric that bears directly on a variety of properties related to folding. Leveraging chemical shift to gain insight into folding requires a set of reference chemical shift values corresponding to each building block type (i.e., the 20 canonical amino acids in the case of natural proteins) in a random coil state and knowledge of systematic changes in chemical shift associated with particular folded conformations. Although well documented for natural proteins, these issues remain unexplored in the context of protein mimetics. Here, we report random coil chemical shift values for a library of artificial amino acid monomers frequently used to construct heterogeneous-backbone protein analogues as well as a spectroscopic signature associated with one monomer class, β3-residues bearing proteinogenic side chains, adopting a helical folded conformation. Collectively, these results will facilitate the continued utilization of NMR for the study of structure and dynamics in protein-like artificial backbones.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shelby L Heath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jacob A Wolfe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Gregory L O'Brien
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexis N Distefano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zachary E Reinert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
6
|
Cabalteja CC, Lin Q, Harmon TW, Rao SR, Di YP, Horne WS. Heterogeneous-Backbone Proteomimetic Analogues of Lasiocepsin, a Disulfide-Rich Antimicrobial Peptide with a Compact Tertiary Fold. ACS Chem Biol 2022; 17:987-997. [PMID: 35290019 PMCID: PMC9039985 DOI: 10.1021/acschembio.2c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The emergence of resistance to clinically used antibiotics by bacteria presents a significant problem in public health. Natural antimicrobial peptides (AMPs) are a valuable source of antibiotics that act by a mechanism less prone to the evolutionary development of resistance. In an effort to realize the promise of AMPs while overcoming limitations such as poor biostability, researchers have sought sequence-defined oligomers with artificial amide-based backbones that show membrane-disrupting functions similar to natural agents. Most of this precedent has focused on short peptidomimetic analogues of unstructured chains or secondary folds; however, the natural antimicrobial arsenal includes a number of small- and medium-sized proteins that act via an ordered tertiary structure. Generating proteomimetic analogues of these scaffolds poses a challenge due to the increased complexity of the target for mimicry. Here, we report the development of heterogeneous-backbone variants of lasiocepsin, a 27-residue disulfide-rich AMP found in bee venom that adopts a compact tertiary fold. Iterative cycles of design, synthesis, and biological evaluation yielded analogues of the natural domain with ∼30 to 40% artificial backbone content, comparable antibacterial activity, reduced host cell toxicity, and improved stability to proteolytic degradation. High-resolution structures determined for several variants by NMR provide insights into the interplay among backbone composition, tertiary fold, and biological properties. Collectively, the results reported here broaden the scope of protein functional mimicry by artificial backbone analogues of tertiary folding patterns and suggest protein backbone engineering as a means to tune protein function by exerting site-specific control over protein folded structure.
Collapse
Affiliation(s)
- Chino C Cabalteja
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiao Lin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Drewniak-Świtalska M, Barycza B, Rudzińska-Szostak E, Morawiak P, Berlicki Ł. Constrained beta-amino acid-containing miniproteins. Org Biomol Chem 2021; 19:4272-4278. [PMID: 34010377 DOI: 10.1039/d1ob00309g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The construction of β-amino acid-containing peptides that fold to tertiary structures in solution remains challenging. Two model miniproteins, namely, Trp-cage and FSD, were scanned using a constrained β-amino acid in order to evaluate its impact on the folding process. Relationships between forces stabilizing the miniprotein structure and conformational stability of analogues were found. The possibility of a significant increase of the conformational stability of the studied miniproteins by substitution with the β-amino acid at the terminus of a helix is shown. On the basis of these results, β-amino acid containing-peptide analogs with helical fragments substantially altered by the incorporation of several constrained β-amino acids were designed, synthesized and evaluated with respect to their structure and stability. The smallest known β-amino acid-containing peptide with a well-defined tertiary structure is described.
Collapse
Affiliation(s)
- Magda Drewniak-Świtalska
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Barbara Barycza
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Paweł Morawiak
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
8
|
Santhouse JR, Rao SR, Horne WS. Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics. Methods Enzymol 2021; 656:93-122. [PMID: 34325801 PMCID: PMC8392274 DOI: 10.1016/bs.mie.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones. We provide an overview of the use of X-ray crystallography and NMR spectroscopy in such systems and review example applications of these methods in the primary literature. Further, we provide detailed protocols for two experiments that have proved useful in our prior and ongoing efforts to compare folding thermodynamics between natural protein domains and heterogeneous-backbone counterparts.
Collapse
Affiliation(s)
| | - Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Bogetti AT, Piston HE, Leung JMG, Cabalteja CC, Yang DT, DeGrave AJ, Debiec KT, Cerutti DS, Case DA, Horne WS, Chong LT. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics. J Chem Phys 2020; 153:064101. [PMID: 35287464 PMCID: PMC7419161 DOI: 10.1063/5.0019054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022] Open
Abstract
We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the Cα-methylated α-residue Aib, homologated β-residues (β3) bearing proteinogenic side chains, and two cyclic β residues (βcyc; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms. Consistent with the AMBER IPolQ lineage of force fields, the charges were derived using the Implicitly Polarized Charge (IPolQ) scheme in the presence of explicit solvent. To our knowledge, no general force field reported to date models the combination of artificial building blocks examined here. In addition, we have derived Karplus coefficients for the calculation of backbone amide J-coupling constants for β3Ala and ACPC β residues. The AMBER ff15ipq-m force field reproduces experimentally observed J-coupling constants in simple tetrapeptides and maintains the expected conformational propensities in reported structures of proteins/peptides containing the artificial building blocks of interest-all on the μs timescale. These encouraging results demonstrate the power and robustness of the IPolQ lineage of force fields in modeling the structure and dynamics of natural proteins as well as mimetics with protein-inspired artificial backbones in atomic detail.
Collapse
Affiliation(s)
- Anthony T. Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Hannah E. Piston
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jeremy M. G. Leung
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | - Darian T. Yang
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, USA
| | - Alex J. DeGrave
- School of Computer Science and Engineering, University of Washington, Seattle, Washington 98115, USA
| | | | - David S. Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 008854, USA
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
10
|
Rao SR, Horne WS. Proteomimetic Zinc Finger Domains with Modified Metal-binding β-Turns. Pept Sci (Hoboken) 2020; 112. [PMID: 33733039 DOI: 10.1002/pep2.24177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mimicry of protein tertiary folds by chains artificial in backbone chemical composition leads to proteomimetic analogues with potential utility as bioactive agents and as tools to shed light on biomacromolecule behavior. Notable successes toward such molecules have been achieved; however, as protein structural diversity is vast, design principles must be continually honed as they are applied to new prototype folding patterns. One specific structure where a gap remains in understanding how to effectively generate modified backbone analogues is the metal-binding β-turn found in zinc finger domains. Literature precedent suggests several factors that may act in concert, including the artificial moiety used to modify the turn, the sequence in which it is applied, and modifications present elsewhere in the domain. Here, we report efforts to gain insights into these issues and leverage these insights to construct a zinc finger mimetic with backbone modifications throughout its constituent secondary structures. We first conduct a systematic comparison of four turn mimetics in a common host sequence, quantifying relative efficacy for use in a metal-binding context. We go on to construct a proteomimetic zinc finger domain in which the helix, strands, and turn are simultaneously modified, resulting in a variant with 23% artificial residues, a tertiary fold indistinguishable from the prototype, and a folded stability comparable to the natural backbone on which the variant is based. Collectively, the results reported provide new insights into the effects of backbone modification on structure and stability of metal-binding domains and help inform the design of metalloprotein mimetics.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Horne WS, Grossmann TN. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nat Chem 2020; 12:331-337. [PMID: 32029906 DOI: 10.1038/s41557-020-0420-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Proteins have evolved as a variable platform that provides access to molecules with diverse shapes, sizes and functions. These features have inspired chemists for decades to seek artificial mimetics of proteins with improved or novel properties. Such work has focused primarily on small protein fragments, often isolated secondary structures; however, there has lately been a growing interest in the design of artificial molecules that mimic larger, more complex tertiary folds. In this Perspective, we define these agents as 'proteomimetics' and discuss the recent advances in the field. Proteomimetics can be divided into three categories: protein domains with side-chain functionality that alters the native linear-chain topology; protein domains in which the chemical composition of the polypeptide backbone has been partially altered; and protein-like folded architectures that are composed entirely of non-natural monomer units. We give an overview of these proteomimetic approaches and outline remaining challenges facing the field.
Collapse
Affiliation(s)
- W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Werner HM, Estabrooks SK, Preston GM, Brodsky JL, Horne WS. Exploring the Functional Consequences of Protein Backbone Alteration in Ubiquitin through Native Chemical Ligation. Chembiochem 2019; 20:2346-2350. [PMID: 31059184 DOI: 10.1002/cbic.201900225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 01/21/2023]
Abstract
Ubiquitin (Ub) plays critical roles in myriad protein degradation and signaling networks in the cell. We report herein Ub mimetics based on backbones that blend natural and artificial amino acid units. The variants were prepared by a modular route based on native chemical ligation. Biological assays show that some are enzymatically polymerized onto protein substrates, and that the resulting Ub tags are recognized for downstream pathways. These results advance the size and complexity of folded proteins mimicked by artificial backbones and expand the functional scope of such agents.
Collapse
Affiliation(s)
- Halina M Werner
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Samuel K Estabrooks
- Department of Biological Sciences, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|