1
|
Junges LH, Müller-Santos M. Exploring the biocatalysis of psilocybin and other tryptamines: Enzymatic pathways, synthetic strategies, and industrial implications. Biotechnol Prog 2025; 41:e3513. [PMID: 39366919 DOI: 10.1002/btpr.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.
Collapse
Affiliation(s)
- Lucas Henrique Junges
- Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
2
|
Lombe BK, Zhou T, Caputi L, Ploss K, O'Connor SE. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids. Angew Chem Int Ed Engl 2025; 64:e202418306. [PMID: 39508515 DOI: 10.1002/anie.202418306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Quinine is a historically important natural product containing a methoxy group that has been assumed to be incorporated at a late pathway stage. Here we show that the methoxy group in quinine and related alkaloids is introduced onto the starting substrate tryptamine. Feeding studies definitively show that 5-methoxytryptamine is utilized as a quinine biosynthetic intermediate in planta. We discover the biosynthetic genes that encode the responsible oxidase and methyltransferase, and we use these genes to reconstitute the early steps of the alkaloid biosynthetic pathway in Nicotiana benthamiana to produce a mixture of methoxylated and non-methoxylated alkaloid intermediates. Importantly, we show that the co-occurrence of both tryptamine and 5-methoxytryptamine substrates, along with the substrate promiscuity of downstream pathway enzymes, enable parallel formation of both methoxylated and non-methoxylated alkaloids.
Collapse
Affiliation(s)
- Blaise Kimbadi Lombe
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Tingan Zhou
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Kerstin Ploss
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
3
|
Kanis FC, Broude CN, Hellwarth EB, Gibbons WJ, Sen AK, Adams AM, Wang X, Jones JA. Evaluation of TrpM and PsiD substrate promiscuity reveals new biocatalytic capabilities. Biotechnol Prog 2024; 40:e3492. [PMID: 38888046 PMCID: PMC11659798 DOI: 10.1002/btpr.3492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
N-methylated tryptamines, such as the hallucinogenic natural products, psilocybin and N,N-dimethyltryptamine (DMT), are gaining interest from the medical community due to their potential as next generation treatments for mental health disorders. The clinical relevance of these compounds has driven scientists to develop biosynthetic production routes to a number of tryptamine drug candidates, and efforts are ongoing to expand and further develop these biosynthetic capabilities. To that end, we have further characterized the substrate preferences of two enzymes involved in tryptamine biosynthesis: TrpM, a tryptophan N-methyltransferase from Psilocybe serbica, and PsiD, the gateway decarboxylase of the psilocybin biosynthesis pathway. Here, we show that TrpM can N-methylate the non-native amino acid substrate, 4-hydroxytryptophan, a key intermediate in the Escherichia coli-based recombinant psilocybin biosynthesis pathway. However, the ability to incorporate TrpM into a functional psilocybin biosynthesis pathway was thwarted by PsiD's inability to use N,N-dimethyl-4-hydroxytryptophan as substrate, under the culturing conditions tested, despite demonstrating activity on N-methylated and 4-hydroxylated tryptophan derivatives individually. Taken together, this work expands upon the known substrates for TrpM and PsiD, further increasing the diversity of tryptamine biosynthetic products.
Collapse
Affiliation(s)
- Fiona C. Kanis
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Caroline N. Broude
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| | - Elle B. Hellwarth
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - William J. Gibbons
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Abhishek K. Sen
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Alexandra M. Adams
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Xin Wang
- Department of MicrobiologyMiami UniversityOxfordOhioUSA
- Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - J. Andrew Jones
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| |
Collapse
|
4
|
Bradley SA, Hansson FG, Lehka BJ, Rago D, Pinho P, Peng H, Adhikari KB, Haidar AK, Hansen LG, Volkova D, Holtz M, Muyo Abad S, Ma X, Koudounas K, Besseau S, Gautron N, Mélin C, Marc J, Birer Williams C, Courdavault V, Jensen ED, Keasling JD, Zhang J, Jensen MK. Yeast Platforms for Production and Screening of Bioactive Derivatives of Rauwolscine. ACS Synth Biol 2024; 13:1498-1512. [PMID: 38635307 DOI: 10.1021/acssynbio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pedro Pinho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Huadong Peng
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Daria Volkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sergi Muyo Abad
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Céline Mélin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Caroline Birer Williams
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, F-37200 Tours, France
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608,United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- Biomia ApS, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Reed KB, d'Oelsnitz S, Brooks SM, Wells J, Zhao M, Trivedi A, Eshraghi S, Alper HS. Fluorescence-Based Screens for Engineering Enzymes Linked to Halogenated Tryptophan. ACS Synth Biol 2024; 13:1373-1381. [PMID: 38533851 DOI: 10.1021/acssynbio.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Directed evolution is often limited by the throughput of accurate screening methods. Here we demonstrate the feasibility of utilizing a singular transcription factor (TF)-system that can be refactored in two ways (both as an activator and repressor). Specifically, we showcase the use of previously evolved 5-halo- or 6-halo-tryptophan-specific TF biosensors suitable for the detection of a halogenated tryptophan molecule in vivo. We subsequently validate the biosensor's utility for two halogenase-specific halo-tryptophan accumulation screens. First, we isolated 5-tryptophan-halogenase, XsHal, from a mixed pool of halogenases with 100% efficiency. Thereafter, we generated a targeted library of the catalytic residue of 6-tryptophan halogenase, Th-Hal, and isolated functioning halogenases with 100% efficiency. Lastly, we refactor the TF circuit to respond to the depletion of halogenated tryptophan and prototype a high-throughput biosensor-directed evolution scheme to screen for downstream enzyme variants capable of promiscuously converting halogenated tryptophan. Altogether, this work takes a significant step toward the rapid and higher throughput screening of halogenases and halo-tryptophan converting enzymes to further reinforce efforts to enable high-level bioproduction of halogenated chemicals.
Collapse
Affiliation(s)
- Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Simon d'Oelsnitz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| | | | - Jordan Wells
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Minye Zhao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Selina Eshraghi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Reed KB, Brooks SM, Wells J, Blake KJ, Zhao M, Placido K, d'Oelsnitz S, Trivedi A, Gadhiyar S, Alper HS. A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules. Nat Commun 2024; 15:3188. [PMID: 38609402 PMCID: PMC11015028 DOI: 10.1038/s41467-024-47387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Halogen-containing molecules are ubiquitous in modern society and present unique chemical possibilities. As a whole, de novo fermentation and synthetic pathway construction for these molecules remain relatively underexplored and could unlock molecules with exciting new applications in industries ranging from textiles to agrochemicals to pharmaceuticals. Here, we report a mix-and-match co-culture platform to de novo generate a large array of halogenated tryptophan derivatives in Escherichia coli from glucose. First, we engineer E. coli to produce between 300 and 700 mg/L of six different halogenated tryptophan precursors. Second, we harness the native promiscuity of multiple downstream enzymes to access unexplored regions of metabolism. Finally, through modular co-culture fermentations, we demonstrate a plug-and-play bioproduction platform, culminating in the generation of 26 distinct halogenated molecules produced de novo including precursors to prodrugs 4-chloro- and 4-bromo-kynurenine and new-to-nature halogenated beta carbolines.
Collapse
Affiliation(s)
- Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Jordan Wells
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX, USA
| | - Minye Zhao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kira Placido
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Simon d'Oelsnitz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Shruti Gadhiyar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA.
| |
Collapse
|
7
|
Bradley SA, Lehka BJ, Hansson FG, Adhikari KB, Rago D, Rubaszka P, Haidar AK, Chen L, Hansen LG, Gudich O, Giannakou K, Lengger B, Gill RT, Nakamura Y, de Bernonville TD, Koudounas K, Romero-Suarez D, Ding L, Qiao Y, Frimurer TM, Petersen AA, Besseau S, Kumar S, Gautron N, Melin C, Marc J, Jeanneau R, O'Connor SE, Courdavault V, Keasling JD, Zhang J, Jensen MK. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast. Nat Chem Biol 2023; 19:1551-1560. [PMID: 37932529 PMCID: PMC10667104 DOI: 10.1038/s41589-023-01430-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2023] [Indexed: 11/08/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) represent a large class of plant natural products with marketed pharmaceutical activities against a wide range of indications, including cancer, malaria and hypertension. Halogenated MIAs have shown improved pharmaceutical properties; however, synthesis of new-to-nature halogenated MIAs remains a challenge. Here we demonstrate a platform for de novo biosynthesis of two MIAs, serpentine and alstonine, in baker's yeast Saccharomyces cerevisiae and deploy it to systematically explore the biocatalytic potential of refactored MIA pathways for the production of halogenated MIAs. From this, we demonstrate conversion of individual haloindole derivatives to a total of 19 different new-to-nature haloserpentine and haloalstonine analogs. Furthermore, by process optimization and heterologous expression of a modified halogenase in the microbial MIA platform, we document de novo halogenation and biosynthesis of chloroalstonine. Together, this study highlights a microbial platform for enzymatic exploration and production of complex natural and new-to-nature MIAs with therapeutic potential.
Collapse
Affiliation(s)
- Samuel A Bradley
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Khem B Adhikari
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Paulina Rubaszka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ahmad K Haidar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Olga Gudich
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Konstantina Giannakou
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ryan T Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | - David Romero-Suarez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anja A Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Sandeep Kumar
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Nicolas Gautron
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Celine Melin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jillian Marc
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | | | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
8
|
Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. BIOLOGY 2023; 12:biology12020248. [PMID: 36829524 PMCID: PMC9952912 DOI: 10.3390/biology12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis No. 173; Leuconostoc mesenteroides No. 225; Liquorilactobacillus uvarum No. 245). The antimicrobial properties of the untreated and fermented Spirulina against a variety of pathogenic and opportunistic strains were tested. The highest concentrations of L-Glu (3841 mg/kg) and GABA (2396 mg/kg) were found after 48 h of SSF with No. 173 and No. 244 strains, respectively. The LAB strain used for biotreatment and the process conditions, as well as the interaction of these factors, had statistically significant effects on the GABA concentration in Spirulina (p ≤ 0.001, p = 0.019 and p = 0.011, respectively). In all cases, the SSF of Spirulina had a higher total BA content than SMF. Most of the fermented Spirulina showed exceptional antimicrobial activity against Staphylococcus aureus but not against the other pathogenic bacteria. The ratios of BA/GABA and BA/L-Glu ranged from 0.5 to 62 and from 0.31 to 10.7, respectively. The GABA content was correlated with putrescine, cadaverine, histamine, tyramine, spermidine and spermine contents. The L-glutamic acid concentration showed positive moderate correlations with tryptamine, putrescine, spermidine and spermine. To summarize, while high concentrations of desirable compounds are formed during fermentation, the formation of non-desirable compounds (BAs) must also be considered due to the similar mechanism of their synthesis as well as the possibility of obtaining high concentrations in the end products.
Collapse
|
9
|
Schäfer T, Kramer K, Werten S, Rupp B, Hoffmeister D. Characterization of the Gateway Decarboxylase for Psilocybin Biosynthesis. Chembiochem 2022; 23:e202200551. [PMID: 36327140 DOI: 10.1002/cbic.202200551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The l-tryptophan decarboxylase PsiD catalyzes the initial step of the metabolic cascade to psilocybin, the major indoleethylamine natural product of the "magic" mushrooms and a candidate drug against major depressive disorder. Unlike numerous pyridoxal phosphate (PLP)-dependent decarboxylases for natural product biosyntheses, PsiD is PLP-independent and resembles type II phosphatidylserine decarboxylases. Here, we report on the in vitro biochemical characterization of Psilocybe cubensis PsiD along with in silico modeling of the PsiD structure. A non-canonical serine protease triad for autocatalytic cleavage of the pro-protein was predicted and experimentally verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Kristina Kramer
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medizinische Universität Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medizinische Universität Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria.,k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
10
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
11
|
Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis. Nat Commun 2022; 13:5242. [PMID: 36068220 PMCID: PMC9448781 DOI: 10.1038/s41467-022-32789-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering. Efficient engineering of enzymes for expanded substrate scope is currently challenging. Here, the authors develop simple principles of how to design and interpret Substrate Multiplexed Screening assays to guide protein engineering to enable activity improvements with simultaneously with multiple substrates.
Collapse
|
12
|
Qiao C, Chen F, Liu Z, Huang T, Li W, Zhang G, Luo Y. Functional characterization of a catalytically promiscuous tryptophan decarboxylase from camptothecin-producing Camptotheca acuminata. FRONTIERS IN PLANT SCIENCE 2022; 13:987348. [PMID: 36061783 PMCID: PMC9433702 DOI: 10.3389/fpls.2022.987348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Tryptophan decarboxylases (TDCs) are a group of pyridoxal 5'-phosphate-dependent enzymes involved in the enzymatic conversion of tryptophan into tryptamine, a critical biogenic amine. We herein mined and cloned a TDC-encoding gene, CaTDC3, from camptothecin-producing plant Camptotheca acuminata. The intact CaTDC3 was heterologously overexpressed in Escherichia coli and the recombinant CaTDC3 was purified to homogeneity. High-performance liquid chromatography (HPLC)-diode array detector (DAD) and high resolution mass spectrometry (HRMS) data analyses of the CaTDC3-catalyzed reaction mixture confirmed the catalytically decarboxylative activity of CaTDC3. CaTDC3 shows strict stereoselectivity for L-tryptophan. Homology modeling and molecular docking implied CaTDC3's recognition of L-tryptophan derivatives and analogs. Substrate scope investigations revealed that the appropriate substituent groups on the indole ring, i.e., hydroxylated and halogenated L-tryptophans, could be recognized by CaTDC3 and the decarboxylation reactions generated the corresponding tryptamines. The Cβ -methyl-L-tryptophans were decarboxylated by CaTDC3 efficiently. 1-Thio-L-tryptophan, the NH group of the indole ring replaced by an S atom, could be decarboxylated by CaTDC3. CaTDC3 catalyzed the decarboxylation of 7-aza-L-tryptophan, an N displacement of the C on the aromatic ring, to afford 7-aza-tryptamine. L-Kynurenine, an L-tryptophan degradation product, could be decarboxylated by CaTDC3. The present works uncover a catalytically promiscuous TDC and the TDC is a versatile decarboxylase in synthetic biology for specialized pharmaceutically important substances.
Collapse
Affiliation(s)
- Chong Qiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhan Liu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianfang Huang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yinggang Luo
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
13
|
Smith JL, Harrison IM, Bingman CA, Buller AR. Investigation of β-Substitution Activity of O-Acetylserine Sulfhydrolase from Citrullus vulgaris. Chembiochem 2022; 23:e202200157. [PMID: 35476889 PMCID: PMC9401013 DOI: 10.1002/cbic.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent enzymes have garnered interest for their ability to synthesize non-standard amino acids (nsAAs). One such class of enzymes, O-acetylserine sulfhydrylases (OASSs), catalyzes the final step in the biosynthesis of l-cysteine. Here, we examine the β-substitution capability of the OASS from Citrullus vulgaris (CvOASS), a putative l-mimosine synthase. While the previously reported mimosine synthase activity was not reproducible in our hands, we successfully identified non-native reactivity with a variety of O-nucleophiles. Optimization of reaction conditions for carboxylate and phenolate substrates led to distinct conditions that were leveraged for the preparative-scale synthesis of nsAAs. We further show this enzyme is capable of C-C bond formation through a β-alkylation reaction with an activated nitroalkane. To facilitate understanding of this enzyme, we determined the crystal structure of the enzyme bound to PLP as the internal aldimine at 1.55 Å, revealing key features of the active site and providing information that may guide subsequent development of CvOASS as a practical biocatalyst.
Collapse
Affiliation(s)
- Jamorious L. Smith
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AvenueMadisonWisconsin53706USA
| | - Isa Madrigal Harrison
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AvenueMadisonWisconsin53706USA
| | - Craig A. Bingman
- Department of BiochemistryUniversity of Wisconsin-Madison433 Babcock DriveMadisonWisconsin53706USA
| | - Andrew R. Buller
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AvenueMadisonWisconsin53706USA
| |
Collapse
|
14
|
Han SW, Shin JS. Aromatic L-amino acid decarboxylases: mechanistic features and microbial applications. Appl Microbiol Biotechnol 2022; 106:4445-4458. [DOI: 10.1007/s00253-022-12028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
|
15
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
16
|
Han SW, Choi Y, Jang Y, Kim JS, Shin JS. One-pot biosynthesis of aromatic D-amino acids and neuroactive monoamines via enantioselective decarboxylation under in situ product removal using ion exchange resin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Choi Y, Han SW, Kim JS, Jang Y, Shin JS. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Appl Microbiol Biotechnol 2021; 105:2775-2785. [PMID: 33713143 DOI: 10.1007/s00253-021-11122-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/29/2022]
Abstract
Aromatic L-amino acid decarboxylases (AADCs) are ubiquitously found in higher organisms owing to their physiological role in the synthesis of neurotransmitters and alkaloids. However, bacterial AADC has not attracted much attention because of its rather limited availability and narrow substrate range. Here, we examined the biochemical properties of AADC from Bacillus atrophaeus (AADC-BA) and assessed the synthetic feasibility of the enzyme for the preparation of monoamine neurotransmitters. AADC-BA was expressed in Escherichia coli BL21(DE3) and the purified enzyme showed a specific activity of 2.6 ± 0.4 U/mg for 10 mM L-phenylalanine (L-Phe) at 37 °C. AADC-BA showed optimal pH and temperature ranges at 7-8 and 37-45 °C, respectively. The KM and kcat values for L-Phe were 7.2 mM and 7.4 s-1, respectively, at pH 7.0 and 37 °C. Comparison of the kinetic constants at different temperatures revealed that the temperature dependency of the enzyme was mainly determined by catalytic turnover rather than substrate binding. AADC-BA showed a broad substrate scope for various aromatic amino acids, including L-Phe, L-tryptophan (610% relative to L-Phe), L-tyrosine (12%), 3,4-dihydroxyphenyl-L-alanine (24%), 5-hydroxy-L-tryptophan (L-HTP, 71%), 4-chloro-L-phenylalanine (520%), and 4-nitro-L-phenylalanine (450%). Homology modeling and docking simulations were carried out and were consistent with the observed substrate specificity. To demonstrate the synthetic potential of AADC-BA, we carried out the production of serotonin by decarboxylation of L-HTP. The reaction yield of serotonin reached 98% after 1 h at the reaction conditions of 50 mM L-HTP and 4 U/mL AADC-BA. Moreover, we carried out preparative-scale decarboxylation of L-Phe (100 mM in 40-mL reaction mixture) and isolated the resulting 2-phenylethylamine (51% recovery yield). We expect that the broad substrate specificity of AADC-BA can be exploited to produce various aromatic biogenic amines. KEY POINTS: • AADC-BA showed broad substrate specificity for various aromatic amino acids. • The substrate specificity was elucidated by in silico structural modeling. • The synthetic potential of AADC-BA was demonstrated for the production of biogenic amines.
Collapse
Affiliation(s)
- Yeri Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Sang-Woo Han
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jun-Sung Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Youngho Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Watkins-Dulaney E, Straathof S, Arnold F. Tryptophan Synthase: Biocatalyst Extraordinaire. Chembiochem 2021; 22:5-16. [PMID: 32677310 PMCID: PMC7935429 DOI: 10.1002/cbic.202000379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Tryptophan synthase (TrpS) has emerged as a paragon of noncanonical amino acid (ncAA) synthesis and is an ideal biocatalyst for synthetic and biological applications. TrpS catalyzes an irreversible, C-C bond-forming reaction between indole and serine to make l-tryptophan; native TrpS complexes possess fairly broad specificity for indole analogues, but are difficult to engineer to extend substrate scope or to confer other useful properties due to allosteric constraints and their heterodimeric structure. Directed evolution freed the catalytically relevant TrpS β-subunit (TrpB) from allosteric regulation by its TrpA partner and has enabled dramatic expansion of the enzyme's substrate scope. This review examines the long and storied career of TrpS from the perspective of its application in ncAA synthesis and biocatalytic cascades.
Collapse
Affiliation(s)
- Ella Watkins-Dulaney
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Sabine Straathof
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Frances Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
20
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|