1
|
Tao Q, Cai T, Xiao Y, Han T, Shen L, Cheng C, Xu S, Li A, Zhang P, Chen J, Zhang Y, Tong Q, Cai X. Genome-guided discovery of coublibactins from Nocardia coubleae and their gallium complexes with potent antileukemic activity. Bioorg Chem 2025; 160:108508. [PMID: 40280014 DOI: 10.1016/j.bioorg.2025.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The pursuit of highly effective and selective anticancer drugs remains a critical challenge. Metal-based complexes, particularly gallium-containing compounds, offer promising therapeutic avenues due to their unique mechanisms of action. To identify novel scaffolds for such complexes, we performed a comprehensive genomic analysis of Nocardia species, revealing the prevalence of siderophore biosynthetic gene clusters, including the highly conserved nocobactin NA-like clusters. From N. coubleae DSM 44960, we isolated three new siderophores, coublibactins A-C (1-3), along with eight congeners (4-11) with known planar structures, all characterized by exceptional iron-binding affinity. Subsequent gallium substitution yielded gallium complexes (Ga-1-11). Among these, Ga-6 exhibited significant anticancer activity against human acute promyelocytic leukemia NB4 cells with IC50 value of 1.35 μM. Pharmacological studies showed that Ga-6 induces cell cycle arrest and apoptosis in NB4 cells. Our findings revealed microbial siderophores as promising scaffolds for the design of next-generation metal-based anticancer therapeutics, particularly gallium-based agents.
Collapse
Affiliation(s)
- Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Teng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tao Han
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chang Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Koech S, Plechatá M, Pathom-aree W, Kamenik Z, Jaisi A. Strategies for Actinobacteria Isolation, Cultivation, and Metabolite Production that Are Biologically Important. ACS OMEGA 2025; 10:15923-15934. [PMID: 40321516 PMCID: PMC12044489 DOI: 10.1021/acsomega.5c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Novel antimicrobial agents are urgently needed to combat antimicrobial resistance from multidrug-resistant organisms. Actinobacteria are key sources of bioactive metabolites with diverse biological activities. Despite their contributions to drug discovery, the process from strain identification to drug manufacturing faces many challenges, especially the rediscovery of known compounds. Recent technological and scientific advancements have accelerated drug development. Efforts to isolate and screen rare actinobacterial species could yield novel bioactive compounds. This review summarizes techniques for selectively isolating rare actinobacteria, improving bioactive metabolite production, and discovering potential strains. Notably, new genomic strategies and new discoveries regarding spectroscopic signature-based bioactive natural products containing specific structural motifs are also discussed. Furthermore, this review updates the compounds derived from rare actinobacteria and their biological applications.
Collapse
Affiliation(s)
- Samson
Cheruiyot Koech
- School
of Pharmacy, Walailak University, Thasala, Thai Buri, Nakhon Si Thammarat 80160, Thailand
- Graduate
School, Walailak University, Thasala, Thai Buri, Nakhon Si Thammarat 80160, Thailand
| | - Michaela Plechatá
- Institute
of Microbiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech
Republic
| | - Wasu Pathom-aree
- Department
of Biology, Faculty of Science, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Zdenek Kamenik
- Institute
of Microbiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech
Republic
| | - Amit Jaisi
- School
of Pharmacy, Walailak University, Thasala, Thai Buri, Nakhon Si Thammarat 80160, Thailand
- Biomass
and Oil Palm Center of Excellence, Walailak
University, Thasala, Thai Buri, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Xu S, Wang N, Meng Q, Ma W, Li H. Metabologenomics-Driven Discovery of Nocardimicins from a Psychrophilic Nocardia sp. Strain. JOURNAL OF NATURAL PRODUCTS 2025; 88:103-109. [PMID: 39705533 DOI: 10.1021/acs.jnatprod.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A combined strategy of 2D-NMR-metabolomics-driven substructure tracking with genome mining led to the targeted discovery of 10 nocobactin-type lipopeptides (1-10) from the Arctic-derived phychrophillic Nocardia sp. L-016, among which 1-5 are new compounds, named nocardimicins S-W. The phenoxazole moiety in 1-10, featuring unique NMR values and correlations, was used as a probe for tracking nocardimicin analogues. The structures of 1-5 were established based on extensive MS and NMR spectroscopic analyses. The biosynthesis of nocardimicins (1-10) in Nocardia sp. L-016 is proposed to be achieved by the noc biosynthetic gene cluster, which is composed of two sub-gene clusters (I and II) separated by a 228 kb region. Compounds 1-10 showed moderate inhibition against human cancer cell lines of HCT116 and HepG2 with IC50 values in the range of 3.5-10.2 μM. This work provides an effective application of paired-omics technologies in the discovery of new natural products.
Collapse
Affiliation(s)
- Suling Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Nengfei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 27600, People's Republic of China
| | - Qingzhou Meng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Wenjie Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
4
|
Hara Y. Search for natural products from actinomycetes of the genus Nocardia. J Nat Med 2024; 78:828-837. [PMID: 39093356 PMCID: PMC11364655 DOI: 10.1007/s11418-024-01833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The genus Nocardia are gram-positive bacteria, many of which possess pathogenicity and infect human lungs, skin, brain, and other organs. Since research on the genus Nocardia has not progressed as rapidly as that on the genus Streptomyces, the genus Nocardia is considered a useful undeveloped resource for exploring natural products. On the other hand, when the genus Nocardia infects the human body, the strains are attacked by immune cells such as macrophages. Therefore, we suggested a new method for screening natural products by culturing the genus Nocardia in the presence of animal cells. In this review, we describe our recent results in searching for natural products from the genus Nocardia.
Collapse
Affiliation(s)
- Yasumasa Hara
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
5
|
Kishore S, Del Rio Flores A, Lynch SR, Yuet KP, Khosla C. Discovery and Characterization of the Fully Decorated Nocardiosis-Associated Polyketide Natural Product. J Am Chem Soc 2024; 146:4212-4220. [PMID: 38295028 PMCID: PMC11009873 DOI: 10.1021/jacs.3c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The genomes of 40 strains of Nocardia, most of which were associated with life-threatening human infections, encode a highly conserved assembly line polyketide synthase designated as the NOCAP (NOCardiosis-Associated Polyketide) synthase, whose product structure has been previously described. Here we report the structure and inferred biosynthetic pathway of the fully decorated glycolipid natural product. Its structure reveals a fully substituted benzaldehyde headgroup harboring an unusual polyfunctional tail and an O-linked disaccharide comprising a 3-α-epimycarose and 2-O-methyl-α-rhamnose whose installation requires flavin monooxygenase-dependent hydroxylation of the polyketide product. Production of the fully decorated glycolipid was verified in cultures of two patient-derived Nocardia species. In both E. coli and Nocardia spp., the glycolipid was only detected in culture supernatants, consistent with data from genetic knockout experiments implicating roles for two dedicated proteins in installing the second sugar substituent only after the monoglycosyl intermediate is exported across the bacterial cell membrane. With the NOCAP product in hand, the stage is set for investigating the evolutionary benefit of this polyketide biosynthetic pathway for Nocardia strains capable of infecting human hosts.
Collapse
Affiliation(s)
- Shreya Kishore
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Stephen R Lynch
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kai P Yuet
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Zhao H, Ren Y, Xie F, Dai H, Liu H, Fu C, Müller R. Nobachelins, new siderophores from Nocardiopsisbaichengensis protecting Caenorhabditiselegans from Pseudomonasaeruginosa infection. Synth Syst Biotechnol 2023; 8:640-646. [PMID: 37927895 PMCID: PMC10622741 DOI: 10.1016/j.synbio.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The biosynthetic potential of actinobacteria to produce novel natural products is still regarded as immense. In this paper, we correlated a cryptic biosynthetic gene cluster to chemical molecules by genome mining and chemical analyses, leading to the discovery of a new group of catecholate-hydroxamate siderophores, nobachelins, from Nocardiopsisbaichengensis DSM 44845. Nobachelin biosynthesis genes are conserved in several bacteria from the family Nocardiopsidaceae. Structurally, nobachelins feature fatty-acylated hydroxy-ornithine and a rare chlorinated catecholate group. Intriguingly, nobachelins rescued Caenorhabditiselegans from Pseudomonasaeruginosa-mediated killing.
Collapse
Affiliation(s)
- Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021, Zhoushan, China
| | - Yuhao Ren
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, China
| | - Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Huanqin Dai
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongwei Liu
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
7
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-guided discovery of biaryl-linked lasso peptides. Chem Sci 2023; 14:13176-13183. [PMID: 38023510 PMCID: PMC10664482 DOI: 10.1039/d3sc02380j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Using mass spectrometry, stable isotope incorporation, and extensive 2D-NMR spectrometry, we report the structural characterization of two unique examples of (C-N) biaryl-linked lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with a Trp-Tyr crosslink, while longipepetin A, from Longimycelium tulufanense, features a Trp-Trp linkage. Besides the unusual bicyclic frame, a Met of longipepetin A undergoes S-methylation to yield a trivalent sulfonium, a heretofore unprecedented RiPP modification. A bioinformatic survey revealed additional lasso peptide BGCs containing P450 enzymes which await future characterization. Lastly, nocapeptin A bioactivity was assessed against a panel of human and bacterial cell lines with modest growth-suppression activity detected towards Micrococcus luteus.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Dinh T Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| | - Douglas A Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| |
Collapse
|
8
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-Guided Discovery of Biaryl-Tailored Lasso Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531328. [PMID: 36945544 PMCID: PMC10028836 DOI: 10.1101/2023.03.06.531328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Here, we report the structural characterization of two unique examples of (C-N) biaryl-containing lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with Trp-Tyr crosslink while longipepetin A, from Longimycelium tulufanense, features Trp-Trp linkage. Besides the unusual bicyclic frame, longipepetin A receives an S-methylation by a new Met methyltransferase resulting in unprecedented sulfonium-bearing RiPP. Our bioinformatic survey revealed P450(s) and further maturating enzyme(s)-containing lasso BGCs awaiting future characterization.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Dinh T. Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany)
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Douglas A. Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| |
Collapse
|
9
|
Mendes SS, Marques J, Mesterházy E, Straetener J, Arts M, Pissarro T, Reginold J, Berscheid A, Bornikoel J, Kluj RM, Mayer C, Oesterhelt F, Friães S, Royo B, Schneider T, Brötz-Oesterhelt H, Romão CC, Saraiva LM. Synergetic Antimicrobial Activity and Mechanism of Clotrimazole-Linked CO-Releasing Molecules. ACS BIO & MED CHEM AU 2022; 2:419-436. [PMID: 35996473 PMCID: PMC9389576 DOI: 10.1021/acsbiomedchemau.2c00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Several metal-based
carbon monoxide-releasing molecules (CORMs)
are active CO donors with established antibacterial activity. Among
them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2′-bipyridyl)(azole)]+ display important synergies
against several microbes. We carried out a structure–activity
relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates
with varying metal and ligands. We concluded that the nature of the
bidentate ligand strongly influences the bactericidal activity, with
the substitution of bipyridyl by small bicyclic ligands leading to
highly active clotrimazole conjugates. On the contrary, the metal
did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts:
while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity
and clotrimazole shows only moderate minimal inhibitory concentrations,
the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order
of magnitude higher than that of clotrimazole, and the spectrum of
bacterial target species includes Gram-positive and Gram-negative
bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a
general impact on the membrane topology, has inhibitory effects on
peptidoglycan biosynthesis, and affects energy functions. The mechanism
of action of this kind of CORM conjugates involves a sequence of events
initiated by membrane insertion, followed by membrane disorganization,
inhibition of peptidoglycan synthesis, CO release, and break down
of the membrane potential. These results suggest that conjugation
of CORMs to known antibiotics may produce useful structures with synergistic
effects that increase the conjugate’s activity relative to
that of the antibiotic alone.
Collapse
Affiliation(s)
- Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Joana Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Edit Mesterházy
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Teresa Pissarro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Jorgina Reginold
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Robert M Kluj
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Christoph Mayer
- Institute of Microbiology and Infection Medicine, Dept. of Organismic Interactions, University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Filipp Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Sofia Friães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Beatriz Royo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Clinic Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, Cluster of Excellence Controlling Microbes to Fight Infection. University of Tuebingen, Auf der Morgenstelle 28, 72070 Tuebingen, Germany
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Steinmetz T, Hiller W, Nett M. Amamistatins isolated from Nocardia altamirensis. Beilstein J Org Chem 2022; 18:360-367. [PMID: 35422885 PMCID: PMC8978914 DOI: 10.3762/bjoc.18.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Four new phenolic siderophores were isolated from the actinomycete Nocardia altamirensis along with the known natural product amamistatin B and a putative biosynthetic shunt product. The structures of all compounds were elucidated through 1D and 2D NMR analyses as well as mass spectrometry. The iron-chelating properties of the retrieved metabolites were evaluated in a chrome azurol S assay.
Collapse
Affiliation(s)
- Till Steinmetz
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Sarkar B, Gupta AM, Mandal S. Insights from the comparative genome analysis of natural rubber degrading Nocardia species. Bioinformation 2021; 17:880-890. [PMID: 35574501 PMCID: PMC9070631 DOI: 10.6026/97320630017880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/23/2022] Open
Abstract
Nocardia are known to be a facultative human pathogen and can cause infection in immune compromised patients. Though the details research on the virulence factors of Nocardia are scanty but numerous genes that code such factors were reported from different species of Nocardia. Despite of the presence of several virulence factors, species of this genus have been shown to have role in remediation of many toxic and hazardous materials from the environment. In this study, genome sequences of rubber degrading Nocardia sp. BSTN01 and N.nova SH22a have been analyzed to locate the potential virulence genes. Also, the genomes of facultative pathogenic Nocardia like, N.africana, N. brasiliensis, N. kruczakiae, N. transvalensis and N. veterana have been analyzed to find the gene encoding latex clearing protein (Lcp), a rubber oxygenase enzyme of Gram-positive action bacteria. The study provides an insight about the potentiality of rubberdegrading Nocardia species to emerge as future human pathogens and also the probability of a serious concern if the studied facultative pathogens of Nocardia like N. africana, N. brasiliensis, N. kruczakiae, N. transvalensis and N. veterana are capable of degrading rubber, a regularly used material in clinics. Moreover, use of such possible pathogenic strains for their known role in bioremediation of rubber waste from the environment might be deleterious.
Collapse
Affiliation(s)
- Biraj Sarkar
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700 106, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
12
|
Saad H, Aziz S, Gehringer M, Kramer M, Straetener J, Berscheid A, Brötz‐Oesterhelt H, Gross H. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology Institute of Pharmaceutical Sciences University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Phytochemistry and Plant Systematics Division of Pharmaceutical Industries National Research Centre Dokki Cairo Egypt
| | - Saefuddin Aziz
- Department of Pharmaceutical Biology Institute of Pharmaceutical Sciences University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Microbiology Department Biology Faculty Jenderal Soedirman University Purwokerto Indonesia
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmaceutical Sciences University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Markus Kramer
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds Interfaculty Institute of Microbiology and Infection Medicine University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds Interfaculty Institute of Microbiology and Infection Medicine University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz‐Oesterhelt
- Department of Microbial Bioactive Compounds Interfaculty Institute of Microbiology and Infection Medicine University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection University of Tübingen Tübingen Germany
| | - Harald Gross
- Department of Pharmaceutical Biology Institute of Pharmaceutical Sciences University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection University of Tübingen Tübingen Germany
| |
Collapse
|
13
|
Saad H, Aziz S, Gehringer M, Kramer M, Straetener J, Berscheid A, Brötz‐Oesterhelt H, Gross H. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides. Angew Chem Int Ed Engl 2021; 60:16472-16479. [PMID: 33991039 PMCID: PMC8362196 DOI: 10.1002/anie.202102571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Indexed: 12/16/2022]
Abstract
The increasing number of available genomes, in combination with advanced genome mining techniques, unveiled a plethora of biosynthetic gene clusters (BGCs) coding for ribosomally synthesized and post-translationally modified peptides (RiPPs). The products of these BGCs often represent an enormous resource for new and bioactive compounds, but frequently, they cannot be readily isolated and remain cryptic. Here, we describe a tunable metabologenomic approach that recruits a synergism of bioinformatics in tandem with isotope- and NMR-guided platform to identify the product of an orphan RiPP gene cluster in the genomes of Nocardia terpenica IFM 0406 and 0706T . The application of this tactic resulted in the discovery of nocathioamides family as a founder of a new class of chimeric lanthipeptides I.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Department of Phytochemistry and Plant SystematicsDivision of Pharmaceutical IndustriesNational Research CentreDokkiCairoEgypt
| | - Saefuddin Aziz
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Microbiology DepartmentBiology FacultyJenderal Soedirman UniversityPurwokertoIndonesia
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Markus Kramer
- Institute of Organic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Jan Straetener
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Anne Berscheid
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Heike Brötz‐Oesterhelt
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| | - Harald Gross
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| |
Collapse
|
14
|
Engelbrecht A, Saad H, Gross H, Kaysser L. Natural Products from Nocardia and Their Role in Pathogenicity. Microb Physiol 2021; 31:217-232. [PMID: 34139700 DOI: 10.1159/000516864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Nocardia spp. are filamentous Actinobacteria of the order Corynebacteriales and mostly known for their ability to cause localized and systemic infections in humans. However, the onset and progression of nocardiosis is only poorly understood, in particular the mechanisms of strain-specific presentations. Recent genome sequencing has revealed an extraordinary capacity for the production of specialized small molecules. Such secondary metabolites are often crucial for the producing microbe to survive the challenges of different environmental conditions. An interesting question thus concerns the role of these natural products in Nocardia-associated pathogenicity and immune evasion in a human host. In this review, a summary and discussion of Nocardia metabolites is presented, which may play a part in nocardiosis because of their cytotoxic, immunosuppressive and metal-chelating properties or otherwise vitally important functions. This review also contains so far unpublished data concerning the biosynthesis of these molecules that were obtained by detailed bioinformatic analyses.
Collapse
Affiliation(s)
- Alicia Engelbrecht
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Hamada Saad
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Cairo, Egypt
| | - Harald Gross
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany.,Institute for Drug Discovery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Improved De Novo Draft Genome Sequence of the Nocavionin-Producing Type Strain Nocardia terpenica IFM 0706 and Comparative Genomics with the Closely Related Strain Nocardia terpenica IFM 0406. Microbiol Resour Announc 2020; 9:9/34/e00689-20. [PMID: 32816977 PMCID: PMC7441235 DOI: 10.1128/mra.00689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report an improved de novo draft genome sequence of the human-pathogenic strain Nocardia terpenica IFM 0706T The resequencing unveiled that the genome size is larger than anticipated, reducing significantly the number of contigs and building a basis for comparison with the closely related strain N. terpenica IFM 0406.
Collapse
|
16
|
Männle D, McKinnie SMK, Mantri SS, Steinke K, Lu Z, Moore BS, Ziemert N, Kaysser L. Comparative Genomics and Metabolomics in the Genus Nocardia. mSystems 2020; 5:e00125-20. [PMID: 32487740 PMCID: PMC7413640 DOI: 10.1128/msystems.00125-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023] Open
Abstract
Using automated genome analysis tools, it is often unclear to what degree genetic variability in homologous biosynthetic pathways relates to structural variation. This hampers strain prioritization and compound identification and can lead to overinterpretation of chemical diversity. Here, we assessed the metabolic potential of Nocardia, an underinvestigated actinobacterial genus that is known to comprise opportunistic human pathogens. Our analysis revealed a plethora of putative biosynthetic gene clusters of various classes, including polyketide, nonribosomal peptide, and terpenoid pathways. Furthermore, we used the highly conserved biosynthetic pathway for nocobactin-like siderophores to investigate how gene cluster differences correlate to structural differences in the produced compounds. Sequence similarity networks generated by BiG-SCAPE (Biosynthetic Gene Similarity Clustering and Prospecting Engine) showed the presence of several distinct gene cluster families. Metabolic profiling of selected Nocardia strains using liquid chromatography-mass spectrometry (LC-MS) metabolomics data, nuclear magnetic resonance (NMR) spectroscopy, and GNPS (Global Natural Product Social molecular networking) revealed that nocobactin-like biosynthetic gene cluster (BGC) families above a BiG-SCAPE threshold of 70% can be assigned to distinct structural types of nocobactin-like siderophores.IMPORTANCE Our work emphasizes that Nocardia represent a prolific source for natural products rivaling better-characterized genera such as Streptomyces or Amycolatopsis Furthermore, we showed that large-scale analysis of biosynthetic gene clusters using similarity networks with high stringency allows the distinction and prediction of natural product structural variations. This will facilitate future genomics-driven drug discovery campaigns.
Collapse
Affiliation(s)
- Daniel Männle
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Shaun M K McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Shrikant S Mantri
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Katharina Steinke
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Zeyin Lu
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Tübingen, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Leonard Kaysser
- Pharmaceutical Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|