1
|
Balduzzi E, Geinguenaud F, Sordyl D, Maiti S, Farsani M, Nikolaev G, Arluison V, Bujnicki J. NAIRDB: a database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res 2025; 53:D157-D162. [PMID: 39413200 PMCID: PMC11734278 DOI: 10.1093/nar/gkae885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures. All entries undergo expert validation and curation to maintain the completeness, consistency and quality of the data. NAIRDB can be searched by similarity of nucleic acid sequences or by direct comparison of spectra. The database is open for the submission of the FTIR data for nucleic acids. NAIRDB is available at https://nairdb.genesilico.pl.
Collapse
Affiliation(s)
- Elsa Balduzzi
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Geinguenaud
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Dominik Sordyl
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
2
|
Notarstefano V, Pepe A, Ripanti F, Piccirilli F, Vaccari L, Mariani P. Guanosine hydrogels in focus: A comprehensive analysis through mid-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124939. [PMID: 39137710 DOI: 10.1016/j.saa.2024.124939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Guanosine nucleosides and nucleotides have the peculiar ability to self-assemble in water to form supramolecular complex architectures from G-quartets to G-quadruplexes. G-quadruplexes exhibit in turn a large liquid crystalline lyotropic polymorphism, but they eventually cross-link or entangle to form a densely connected 3D network (a molecular hydrogel), able to entrap very large amount of water (up to the 99% v/v). This high water content of the hydrogels enables tunable softness, deformability, self-healing, and quasi-liquid properties, making them ideal candidates for different biotechnological and biomedical applications. In order to fully exploit their possible applications, Attenuated Total Reflection-Fourier Transform InfraRed (ATR-FTIR) spectroscopy was used to unravel the vibrational characteristics of supramolecular guanosine structures. First, the characteristic vibrations of the known quadruplex structure of guanosine 5'-monophosphate, potassium salt (GMP/K), were investigated: the identified peaks reflected both the chemical composition of the sample and the formation of quartets, octamers, and quadruplexes. Second, the role of K+ and Na+ cations in promoting the quadruplex formation was assessed: infrared spectra confirmed that both cations induce the formation of G-quadruplexes and that GMP/K is more stable in the G-quadruplex organization. Finally, ATR-FTIR spectroscopy was used to investigate binary mixtures of guanosine (Gua) and GMP/K or GMP/Na, both systems forming G-hydrogels. The same G-quadruplex-based structure was found in both mixtures, but the proportion of Gua and GMP affected some features, like sugar puckering, guanine vibrations, and base stacking, reflecting the known side-to-side aggregation and bundle formation occurring in these binary systems.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Università Politecnica delle Marche, Department of Life and Environmental Sciences, Via Brecce Bianche, Ancona, 60131, Italy.
| | - Alessia Pepe
- Università Politecnica delle Marche, Department of Life and Environmental Sciences, Via Brecce Bianche, Ancona, 60131, Italy
| | - Francesca Ripanti
- Università Politecnica delle Marche, Department of Life and Environmental Sciences, Via Brecce Bianche, Ancona, 60131, Italy
| | | | - Lisa Vaccari
- Elettra Sincrotrone Trieste, S.S. 14 - km 163.5, Basovizza, 34149, Italy
| | - Paolo Mariani
- Università Politecnica delle Marche, Department of Life and Environmental Sciences, Via Brecce Bianche, Ancona, 60131, Italy
| |
Collapse
|
3
|
Qian C, Liu Y, Meng W, Jiang Y, Wang S, Wang L. Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes. J Chem Theory Comput 2024; 20:10080-10094. [PMID: 39526974 PMCID: PMC12013862 DOI: 10.1021/acs.jctc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrational non-Condon effects, which describe how molecular vibrational transitions are influenced by a system's rotational and translational degrees of freedom, are often overlooked in spectroscopy studies of biological macromolecules. In this work, we explore these effects in the modeling of infrared (IR) spectra for nucleic acids in the 1600-1800 cm-1 region. Through electronic structure calculations, we reveal that the transition dipole moments of the C═O and C═C stretching modes in nucleobases are highly sensitive to solvation, hydrogen bonding, and base stacking conditions. To incorporate vibrational non-Condon effects into spectroscopy modeling, we use local electric fields on chromophore atoms as collective coordinates and leverage experimental IR spectra of oligonucleotides to develop deep neural network-based transition dipole strength (TDS) maps for the C═O and C═C chromophores. By integrating molecular dynamics simulations with a mixed quantum/classical treatment of the line shape theory, we apply the TDS maps to calculate the IR spectra of nucleoside 5'-monophosphates, DNA double helices and yeast phenylalanine tRNA. The resulting theoretical spectra show quantitative agreement with experimental measurements. While the predictions for nucleoside 5'-monophosphates are comparable to baseline performance, the TDS maps yield significantly improved IR peak intensities across all oligonucleotides. This theoretical framework effectively bridges atomistic simulations and IR spectroscopy experiments, offering molecular insights into how vibrational non-Condon effects impact the observed spectral features.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yaoyukun Jiang
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Schroeder SJ. Insights into nucleic acid helix formation from infrared spectroscopy. Biophys J 2024; 123:115-117. [PMID: 38130057 PMCID: PMC10808036 DOI: 10.1016/j.bpj.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma.
| |
Collapse
|
5
|
Soenarjo AL, Lan Z, Sazanovich IV, Chan YS, Ringholm M, Jha A, Klug DR. The Transition from Unfolded to Folded G-Quadruplex DNA Analyzed and Interpreted by Two-Dimensional Infrared Spectroscopy. J Am Chem Soc 2023; 145:19622-19632. [PMID: 37647128 PMCID: PMC10510320 DOI: 10.1021/jacs.3c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/01/2023]
Abstract
A class of DNA folds/structures known collectively as G-quadruplexes (G4) commonly forms in guanine-rich areas of genomes. G4-DNA is thought to have a functional role in the regulation of gene transcription and telomerase-mediated telomere maintenance and, therefore, is a target for drugs. The details of the molecular interactions that cause stacking of the guanine-tetrads are not well-understood, which limits a rational approach to the drugability of G4 sequences. To explore these interactions, we employed electron-vibration-vibration two-dimensional infrared (EVV 2DIR) spectroscopy to measure extended vibrational coupling spectra for a parallel-stranded G4-DNA formed by the Myc2345 nucleotide sequence. We also tracked the structural changes associated with G4-folding as a function of K+-ion concentration. To classify the structural elements that the folding process generates in terms of vibrational coupling characteristics, we used quantum-chemical calculations utilizing density functional theory to predict the coupling spectra associated with given structures, which are compared against the experimental data. Overall, 102 coupling peaks are experimentally identified and followed during the folding process. Several phenomena are noted and associated with formation of the folded form. This includes frequency shifting, changes in cross-peak intensity, and the appearance of new coupling peaks. We used these observations to propose a folding sequence for this particular type of G4 under our experimental conditions. Overall, the combination of experimental 2DIR data and DFT calculations suggests that guanine-quartets may already be present before the addition of K+-ions, but that these quartets are unstacked until K+-ions are added, at which point the full G4 structure is formed.
Collapse
Affiliation(s)
- A. Larasati Soenarjo
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Zhihao Lan
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell, Oxfordshire OX11 0QX, United Kingdom
| | - Yee San Chan
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Magnus Ringholm
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ajay Jha
- Rosalind
Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - David R. Klug
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| |
Collapse
|
6
|
Meng W, Peng HC, Liu Y, Stelling A, Wang L. Modeling the Infrared Spectroscopy of Oligonucleotides with 13C Isotope Labels. J Phys Chem B 2023; 127:2351-2361. [PMID: 36898003 PMCID: PMC12013859 DOI: 10.1021/acs.jpcb.2c08915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The carbonyl stretching modes have been widely used in linear and two-dimensional infrared (IR) spectroscopy to probe the conformation, interaction, and biological functions of nucleic acids. However, due to their universal appearance in nucleobases, the IR absorption bands of nucleic acids are often highly congested in the 1600-1800 cm-1 region. Following the fruitful applications in proteins, 13C isotope labels have been introduced to the IR measurements of oligonucleotides to reveal their site-specific structural fluctuations and hydrogen bonding conditions. In this work, we combine recently developed frequency and coupling maps to develop a theoretical strategy that models the IR spectra of oligonucleotides with 13C labels directly from molecular dynamics simulations. We apply the theoretical method to nucleoside 5'-monophosphates and DNA double helices and demonstrate how elements of the vibrational Hamiltonian determine the spectral features and their changes upon isotope labeling. Using the double helices as examples, we show that the calculated IR spectra are in good agreement with experiments and the 13C isotope labeling technique can potentially be applied to characterize the stacking configurations and secondary structures of nucleic acids.
Collapse
Affiliation(s)
- Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Allison Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Price DA, Wedamulla P, Hill TD, Loth TM, Moran SD. The polarization dependence of 2D IR cross-peaks distinguishes parallel-stranded and antiparallel-stranded DNA G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120596. [PMID: 34801392 DOI: 10.1016/j.saa.2021.120596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K+-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.
Collapse
Affiliation(s)
- David A Price
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Poornima Wedamulla
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Tayler D Hill
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Taylor M Loth
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States.
| |
Collapse
|
8
|
Fick RJ, Liu AY, Nussbaumer F, Kreutz C, Rangadurai A, Xu Y, Sommer RD, Shi H, Scheiner S, Stelling AL. Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. J Phys Chem B 2021; 125:7613-7627. [PMID: 34236202 PMCID: PMC8311644 DOI: 10.1021/acs.jpcb.1c01351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Measuring the strength
of the hydrogen bonds between DNA base pairs
is of vital importance for understanding how our genetic code is physically
accessed and recognized in cells, particularly during replication
and transcription. Therefore, it is important to develop probes for
these key hydrogen bonds (H-bonds) that dictate events critical to
cellular function, such as the localized melting of DNA. The vibrations
of carbonyl bonds are well-known probes of their H-bonding environment,
and their signals can be observed with infrared (IR) spectroscopy.
Yet, pinpointing a single bond of interest in the complex IR spectrum
of DNA is challenging due to the large number of carbonyl signals
that overlap with each other. Here, we develop a method using isotope
editing and infrared (IR) spectroscopy to isolate IR signals from
the thymine (T) C2=O carbonyl. We use solvatochromatic studies
to show that the TC2=O signal’s position in the IR spectrum
is sensitive to the H-bonding capacity of the solvent. Our results
indicate that C2=O of a single T base within DNA duplexes experiences
weak H-bonding interactions. This finding is consistent with the existence
of a third, noncanonical CH···O H-bond between adenine
and thymine in both Watson–Crick and Hoogsteen base pairs in
DNA.
Collapse
Affiliation(s)
- Robert J Fick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Amy Y Liu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Atul Rangadurai
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Roger D Sommer
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
9
|
Price DA, Hill TD, Hutson KA, Rightnowar BW, Moran SD. Membrane-dependent amyloid aggregation of human BAX α9 (173-192). Protein Sci 2021; 30:1072-1080. [PMID: 33641228 DOI: 10.1002/pro.4053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/07/2022]
Abstract
Mitochondrial outer membrane permeabilization, which is a critical step in apoptosis, is initiated upon transmembrane insertion of the C-terminal α-helix (α9) of the proapoptotic Bcl-2 family protein BAX. The isolated α9 fragment (residues 173-192) is also competent to disrupt model membranes, and the structures of its membrane-associated oligomers are of interest in understanding the potential roles of this sequence in apoptosis. Here, we used ultrafast two-dimensional infrared (2D IR) spectroscopy, thioflavin T binding, and transmission electron microscopy to show that the synthetic BAX α9 peptide (α9p) forms amyloid aggregates in aqueous environments and on the surfaces of anionic small unilamellar vesicles. Its inherent amyloidogenicity was predicted by sequence analysis, and 2D IR spectra reveal that vesicles modulate the β-sheet structures of insoluble aggregates, motivating further examination of the formation or suppression of BAX amyloids in apoptosis.
Collapse
Affiliation(s)
- David A Price
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Tayler D Hill
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Kaitlyn A Hutson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Blaze W Rightnowar
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Sean D Moran
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|