1
|
Tagawa H, Saeki R, Yamamoto C, Tanito K, Tanaka C, Munekawa S, Nii T, Kishimura A, Murakami H, Mori T, Katayama Y. The effect of Fc region affinity of protein-based antibody-recruiting molecules on antibody-dependent cellular cytotoxicity. RSC Adv 2024; 14:22860-22866. [PMID: 39040702 PMCID: PMC11262565 DOI: 10.1039/d4ra03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
Previously, we reported anticancer molecules, Fc-binding antibody-recruiting molecules (Fc-ARMs), which crosslink proteins on cancer cells with endogenous immunoglobulin Gs (IgGs) via their Fc region. The mobilized IgGs on cancer cells can accommodate natural killer cells to induce antibody-dependent cellular cytotoxicity (ADCC). Because previous Fc-ARMs utilized Fc-binding peptides, their affinity to IgGs is weak, which resulted in the limited induction capability of ADCC. Previous Fc-ARMs also unitized small molecular ligands to cancer cells, which limited their universal applicability to any cancer cells. A recent study reported that protein-based Fc-ARMs might overcome the issues associated with non-proteinous Fc-ARMs. Here, we examined the universality of a protein-based Fc-ARM by replacing its tumor-binding domain with a human epidermal growth factor receptor 2 (HER2)-specific affibody (ZHER2:342). We also examined the requirement of its Fc-binding domain affinity. We found that the Fc-ARMs accepted an affibody as a tumor-binding domain to induce ADCC. Furthermore, the required residence time of the complex between Fc-ARM and IgG was ∼102 min, which was comparable to that when monoclonal antibodies bind to their specific antigens. However, we found that the extent of ADCC induced by Fc-ARM was lower than that of conventional IgG-mediated ADCC, indicating that further enhancement of the affinity of the antibody-binding terminus and tumor-binding terminus of Fc-ARM may be needed to achieve ADCC equivalent to that of conventional IgG-mediated ADCC.
Collapse
Affiliation(s)
- Hiroshi Tagawa
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Riku Saeki
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihaya Yamamoto
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihiro Tanaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Shoki Munekawa
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Research Center for Molecular Systems, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Future Chemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
2
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
McCann HM, Lake BP, Hoffman KS, Davola ME, Mossman KL, Rullo AF. Covalent Immune Proximity-Induction Strategy Using SuFEx-Engineered Bifunctional Viral Peptides. ACS Chem Biol 2022; 17:1269-1281. [PMID: 35522208 DOI: 10.1021/acschembio.2c00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalent antibody recruiting molecules (cARMs) constitute a proximity-inducing chemical strategy to modulate the recognition and elimination of cancer cells by the immune system. Recognition is achieved through synthetic bifunctional molecules that use covalency to stably bridge endogenous hapten-specific antibodies like anti-dinitrophenyl (anti-DNP), with tumor antigens on cancer cell surfaces. To recruit these antibodies, cARMs are equipped with the native hapten-binding molecule. The majority of cancer-killing immune machinery, however, recognizes epitopes on protein ligands and not small molecule haptens (e.g., Fc receptors, pathogen-specific antibodies). To access this broader class of immune machinery for recruitment, we developed a covalent immune proximity-inducing strategy. This strategy uses synthetic bifunctional electrophilic peptides derived from the native protein ligand. These bifunctional peptides are engineered to contain both a tumor-targeting molecule and a sulfonyl (VI) fluoride exchange (SuFEx) electrophile. As a proof of concept, we synthesized bifunctional electrophilic peptides derived from glycoprotein D (gD) on herpes simplex virus (HSV), to recruit gD-specific serum anti-HSV antibodies to cancer cells expressing the prostate-specific membrane antigen (PSMA). We demonstrate that serum anti-HSV antibodies can be selectively and irreversibly targeted by these electrophilic peptides and that the reaction rate can be uniquely enhanced by tuning SuFEx chemistry without a loss in selectivity. In cellular assays, electrophilic peptides demonstrated enhanced anti-tumor immunotherapeutic efficacy compared to analogous peptides lacking electrophilic functionality. This enhanced efficacy was especially prominent in the context of (a) natural anti-HSV antibodies isolated from human serum and (b) harder to treat tumor cells associated with lower PSMA expression levels. Overall, we demonstrate a new covalent peptide-based approach to immune proximity induction and reveal the potential utility of anti-viral antibodies in synthetic tumor immunotherapy.
Collapse
Affiliation(s)
- Harrison M. McCann
- Department of Medicine, McMaster Immunology Research Center, Center for Discovery in Cancer Research, Hamilton, Ontario L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Benjamin P.M. Lake
- Department of Medicine, McMaster Immunology Research Center, Center for Discovery in Cancer Research, Hamilton, Ontario L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | | - Maria E. Davola
- Department of Medicine, McMaster Immunology Research Center, Center for Discovery in Cancer Research, Hamilton, Ontario L8S 4K1, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster Immunology Research Center, Center for Discovery in Cancer Research, Hamilton, Ontario L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Anthony F. Rullo
- Department of Medicine, McMaster Immunology Research Center, Center for Discovery in Cancer Research, Hamilton, Ontario L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
4
|
Charles WZ, Faries CR, Street YT, Flowers LS, McNaughton B. Antibody‐Recruitment as a Therapeutic Strategy: A Brief History and Recent Advances. Chembiochem 2022; 23:e202200092. [DOI: 10.1002/cbic.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Brian McNaughton
- Delaware State University Delaware Institute for Science and Technology 1200 N Dupont Hwy 19901 Dover UNITED STATES
| |
Collapse
|
5
|
Zhou K, Hong H, Lin H, Gong L, Li D, Shi J, Zhou Z, Xu F, Wu Z. Chemical Synthesis of Antibody-Hapten Conjugates Capable of Recruiting the Endogenous Antibody to Magnify the Fc Effector Immunity of Antibody for Cancer Immunotherapy. J Med Chem 2021; 65:323-332. [PMID: 34962121 DOI: 10.1021/acs.jmedchem.1c01480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoclonal antibodies (mAbs) with enhanced effector functions in cancer immunotherapy, such as complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC), could improve the clinical performance. Here, we develop an mAb-hapten conjugate strategy to augment the mAb effector functions with the engagement of endogenous antibodies. An "off-the-shelf" mAb, rituximab, is site-specifically conjugated with the rhamnose (Rha) hapten to generate rituximab-Rha conjugates. The octopus-like conjugates could recruit anti-Rha antibodies onto the cancer cell surface and further form an immune complex that is able to provide multivalent Fc domains to interact with immune cells or complement protein C1q, leading to magnified ADCC and CDC simultaneously. One optimal conjugate R2 with PEG2 as a linker exhibits the most potent in vitro cancer cell killing activity and significant in vivo antitumor efficacy in a xenograft model. This is a general and cost-effective approach to generate mAb with improved effector functions that may have broad applications.
Collapse
Affiliation(s)
- Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - HaoFei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Fei Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
6
|
Kapcan E, Lake B, Yang Z, Zhang A, Miller MS, Rullo AF. Covalent Stabilization of Antibody Recruitment Enhances Immune Recognition of Cancer Targets. Biochemistry 2021; 60:1447-1458. [PMID: 33930269 DOI: 10.1021/acs.biochem.1c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody recruiting molecules (ARMs) represent an important class of "proximity-inducing" chemical tools with therapeutic potential. ARMs function by simultaneously binding to a hapten-specific serum antibody (Ab) (e.g., anti-dinitrophenyl (DNP)) and a cancer cell surface protein, enforcing their proximity. ARM anticancer efficacy depends on the formation of ARM:Ab complexes on the cancer cell surface, which activate immune cell recognition and elimination of the cancer cell. Problematically, ARM function in human patients may be limited by conditions that drive the dissociation of ARM:Ab complexes, namely, intrinsically low binding affinity and/or low concentrations of anti-hapten antibodies in human serum. To address this potential limitation, we previously developed a covalent ARM (cARM) chemical tool that eliminates the ARM:antibody equilibrium through a covalent linkage. In the current study, we set out to determine to what extent maximizing the stability of ARM:antibody complexes via cARMs enhances target immune recognition. We observe cARMs significantly increase target immune recognition relative to ARMs across a range of therapeutically relevant antibody concentrations. These results demonstrate that ARM therapeutic function can be dramatically enhanced by increasing the kinetic stability of ARM:antibody complexes localized on cancer cells. Our findings suggest that a) high titres/concentrations of target antibody in human serum are not neccessary and b) saturative antibody recruitment to cancer cells not sufficient, to achieve maximal ARM therapeutic function.
Collapse
|
7
|
Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021; 2:713-724. [PMID: 34212148 PMCID: PMC8190906 DOI: 10.1039/d1cb00007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells. In this review, we aim to highlight the recent advances in the field. We will illustrate the advantages of different ARM approaches and emphasize the importance of a multivalent presentation of the binding units. Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells.![]()
Collapse
Affiliation(s)
- Silvia Achilli
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|