Adesina AS, Luk LYP, Allemann RK. Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase.
Chembiochem 2021;
22:2410-2414. [PMID:
33876533 PMCID:
PMC8360168 DOI:
10.1002/cbic.202100017]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/16/2021] [Indexed: 12/03/2022]
Abstract
Effects of isotopic substitution on the rate constants of human dihydrofolate reductase (HsDHFR), an important target for anti-cancer drugs, have not previously been characterized due to its complex fast kinetics. Here, we report the results of cryo-measurements of the kinetics of the HsDHFR catalyzed reaction and the effects of protein motion on catalysis. Isotopic enzyme labeling revealed an enzyme KIE (kHLE /kHHE ) close to unity above 0 °C; however, the enzyme KIE was increased to 1.72±0.15 at -20 °C, indicating that the coupling of protein motions to the chemical step is minimized under optimal conditions but enhanced at non-physiological temperatures. The presented cryogenic approach provides an opportunity to probe the kinetics of mammalian DHFRs, thereby laying the foundation for characterizing their transition state structure.
Collapse