2
|
Chen YF, Ghazala M, Friedrich RM, Cordova BA, Petroze FN, Srinivasan R, Allan KC, Yan DF, Sax JL, Carr K, Tomchuck SL, Fedorov Y, Huang AY, Desai AB, Adams DJ. Targeting the chromatin binding of exportin-1 disrupts NFAT and T cell activation. Nat Chem Biol 2024; 20:1260-1271. [PMID: 38528120 DOI: 10.1038/s41589-024-01586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Yi Fan Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maryam Ghazala
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ryan M Friedrich
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brittany A Cordova
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Frederick N Petroze
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ramya Srinivasan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David F Yan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kelley Carr
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suzanne L Tomchuck
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Amar B Desai
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Chemical Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
3
|
Balıkçı E, Marques ASMC, Bauer LG, Seupel R, Bennett J, Raux B, Buchan K, Simelis K, Singh U, Rogers C, Ward J, Cheng C, Szommer T, Schützenhofer K, Elkins JM, Sloman DL, Ahel I, Fedorov O, Brennan PE, Huber KVM. Unexpected Noncovalent Off-Target Activity of Clinical BTK Inhibitors Leads to Discovery of a Dual NUDT5/14 Antagonist. J Med Chem 2024; 67:7245-7259. [PMID: 38635563 PMCID: PMC11089510 DOI: 10.1021/acs.jmedchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.
Collapse
Affiliation(s)
- Esra Balıkçı
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Anne-Sophie M. C. Marques
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Ludwig G. Bauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Raina Seupel
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - James Bennett
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Brigitt Raux
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Karly Buchan
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Klemensas Simelis
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Usha Singh
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Catherine Rogers
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Jennifer Ward
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Carol Cheng
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Tamas Szommer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Kira Schützenhofer
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford OX1 3RE, U.K.
| | - Jonathan M. Elkins
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - David L. Sloman
- Departments
of Discovery Chemistry, Merck & Co.
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford OX1 3RE, U.K.
| | - Oleg Fedorov
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Paul E. Brennan
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Alzheimer’s
Research UK Oxford Drug Discovery Institute, Nuffield Department of
Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| | - Kilian V. M. Huber
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
- Target
Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K.
| |
Collapse
|