1
|
Różycka D, Kowalczyk A, Denel-Bobrowska M, Kuźmycz O, Gapińska M, Stączek P, Olejniczak AB. Acridine/Acridone-Carborane Conjugates as Strong DNA-Binding Agents with Anticancer Potential. ChemMedChem 2023; 18:e202200666. [PMID: 36734215 DOI: 10.1002/cmdc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Synthesis of acridine derivatives that act as DNA-targeting anticancer agents is an evolving field and has resulted in the introduction of several drugs into clinical trials. Carboranes can be of importance in designing biologically active compounds due to their specific properties. Therefore, a series of novel acridine analogs modified with carborane clusters were synthesized. The DNA-binding ability of these analogs was evaluated on calf thymus DNA (ct-DNA). Results of these analyses showed that 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propylamino]acridine (30) interacted strongly with ct-DNA, indicating its ability to intercalate into DNA, whereas 9-[(1,7-dicarba-closo-dodecaborane-1-yl)propanamido]acridine (29) changed the B-form of ct-DNA to the Z form. Compound 30 demonstrated cytotoxicity, was able to inhibit cell proliferation, arrest the cell cycle in the S phase in the HeLa cancer cell line, and induced the production of reactive oxygen species (ROS). In addition, it was specifically localized in lysosomes and was a weak inhibitor of Topo IIα.
Collapse
Affiliation(s)
- Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Marta Denel-Bobrowska
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| | - Olga Kuźmycz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., Łódź, 90-237, Poland
| | - Agnieszka B Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Łódź, 93-232, Poland
| |
Collapse
|
2
|
Świtalska M, Filip-Psurska B, Milczarek M, Psurski M, Moszyńska A, Dąbrowska AM, Gawrońska M, Krzymiński K, Bagiński M, Bartoszewski R, Wietrzyk J. Combined anticancer therapy with imidazoacridinone C-1305 and paclitaxel in human lung and colon cancer xenografts-Modulation of tumour angiogenesis. J Cell Mol Med 2022; 26:3950-3964. [PMID: 35701366 PMCID: PMC9279600 DOI: 10.1111/jcmm.17430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/11/2022] Open
Abstract
The acridanone derivative 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) has been described as a potent inhibitor of cancer cell growth. Its mechanism of action in in vitro conditions was attributed, among others, to its ability to bind and stabilize the microtubule network and subsequently exhibit its tumour-suppressive effects in synergy with paclitaxel (PTX). Therefore, the objective of the present study was to analyse the effects of the combined treatment of C-1305 and PTX in vivo. In addition, considering the results of previous genomic analyses, particular attention was given to the effects of this treatment on tumour angiogenesis. Treatment with C-1305 revealed antitumor effect in A549 lung cancer cells, and combined treatment with PTX showed tendency to anticancer activity in HCT116 colon cancer xenografts. It also improved tumour blood perfusion in both tumour models. The plasma level of CCL2 was increased and that of PDGF was decreased after combined treatment with C-1305 and PTX. The experimental results showed that the levels of FGF1, TGF-β and Ang-4 decreased, whereas the levels of ERK1/2 and Akt phosphorylation increased in HCT116 tumour tissue following combined treatment with both drugs. The results of in vitro capillary-like structure formation assay demonstrated the inhibiting effect of C-1305 on this process. Although previous in vitro and in vivo studies suggested a positive effect of C-1305 on cancer cells, combined treatment of HCT116 human colon and A549 lung cancer cells with both PTX and C-1305 in vivo showed that the antitumor activity was restricted and associated with the modulation of tumour angiogenesis.
Collapse
Affiliation(s)
- Marta Świtalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdańsk, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdańsk, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| |
Collapse
|
3
|
Antifungal Activity of Capridine β as a Consequence of Its Biotransformation into Metabolite Affecting Yeast Topoisomerase II Activity. Pathogens 2021; 10:pathogens10020189. [PMID: 33572407 PMCID: PMC7916213 DOI: 10.3390/pathogens10020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, increasing importance is attached to problems caused by fungal pathogens. Current methods of preventing fungal infections remain unsatisfactory. There are several antifungal compounds which are highly effective in some cases, however, they have limitations in usage: Nephrotoxicity and other adverse effects. In addition, the frequent use of available fungistatic drugs promotes drug resistance. Therefore, there is an urgent need for the development of a novel antifungal drug with a different mechanism of action, blocking of the fungal DNA topoisomerases activity appear to be a promising idea. According to previous studies on the m-AMSA moderate inhibitory effect on fungal topoisomerase II, we have decided to study Capridine β (also acridine derivative) antifungal activity, as well as its inhibitory potential on yeast topoisomerase II (yTOPOII). Results indicated that Capridine β antifungal activity depends on the kind of strains analyzed (MICs range 0.5–64 μg mL−1) and is related to its biotransformation in the cells. An investigation of metabolite formation, identified as Capridine β reduction product (IE1) by the fungus Candida albicans was performed. IE1 exhibited no activity against fungal cells due to an inability to enter the cells. Although no antifungal activity was observed, in contrast to Capridine β, biotransformation metabolite totally inhibited the yTOPOII-mediated relaxation at concentrations lower than detected for m-AMSA. The closely related Capridine β only slightly diminished the catalytic activity of yTOPOII.
Collapse
|
4
|
Pawłowska M, Kwaśniewska A, Mazerska Z, Augustin E. Enhanced Activity of P4503A4 and UGT1A10 Induced by Acridinone Derivatives C-1305 and C-1311 in MCF-7 and HCT116 Cancer Cells: Consequences for the Drugs' Cytotoxicity, Metabolism and Cellular Response. Int J Mol Sci 2020; 21:ijms21113954. [PMID: 32486425 PMCID: PMC7312182 DOI: 10.3390/ijms21113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023] Open
Abstract
Activity modulation of drug metabolism enzymes can change the biotransformation of chemotherapeutics and cellular responses induced by them. As a result, drug-drug interactions can be modified. Acridinone derivatives, represented here by C-1305 and C-1311, are potent anticancer drugs. Previous studies in non-cellular systems showed that they are mechanism-based inhibitors of cytochrome P4503A4 and undergo glucuronidation via UDP-glucuronosyltranspherase 1A10 isoenzyme (UGT1A10). Therefore, we investigated the potency of these compounds to modulate P4503A4 and UGT1A10 activity in breast MCF-7 and colon HCT116 cancer cells and their influence on cytotoxicity and cellular response in cells with different expression levels of studied isoenzymes. We show that C-1305 and C-1311 are inducers of not only P4503A4 but also UGT1A10 activity. MCF-7 and HCT116 cells with high P4503A4 activity are more sensitive to acridinone derivatives and undergo apoptosis/necrosis to a greater extent. UGT1A10 was demonstrated to be responsible for C-1305 and C-1311 glucuronidation in cancer cells and glucuronide products were excreted outside the cell very fast. Finally, we show that glucuronidation of C-1305 antitumor agent enhances its pro-apoptotic properties in HCT116 cells, while the cytotoxicity and cellular response induced by C-1311 did not change after drug glucuronidation in both cell lines.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
- Correspondence: ; Tel.: +48-58-347-12-97; Fax: +48-58-347-11-44
| | - Anna Kwaśniewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (Z.M.); (E.A.)
| |
Collapse
|
5
|
Weyers C, Dingle LMK, Wilhelmi BS, Edkins AL, Veale CGL. Use of a non-hepatic cell line highlights limitations associated with cell-based assessment of metabolically induced toxicity. Drug Chem Toxicol 2019; 43:656-662. [PMID: 30880486 DOI: 10.1080/01480545.2019.1585869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression. Overexpression of CYP3A4 resulted in increased HEK293 proliferation, while exposure to four compounds with reported metabolically induced cytotoxicity in liver-derived cells overexpressing CYP3A4 resulted in no increase in cytotoxicity. Our results indicate that overexpression of a single CYP450 isoform in hepatic cell lines may not be a reliable method to discriminate which enzymes are responsible for metabolic induced cytotoxicity.
Collapse
Affiliation(s)
- Carli Weyers
- Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa
| | - Laura M K Dingle
- Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa.,Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Brendan S Wilhelmi
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, South Africa.,Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Scottsville, South Africa
| |
Collapse
|
6
|
Zhou Q, Wu H, You C, Gao Z, Sun K, Wang M, Chen F, Sun B. 1,3-dimethyl-6-nitroacridine derivatives induce apoptosis in human breast cancer cells by targeting DNA. Drug Dev Ind Pharm 2018; 45:212-221. [PMID: 30256663 DOI: 10.1080/03639045.2018.1529185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The acridine derivatives can interact with the double-stranded DNA, which is regarded as the biological target of the anticancer drugs in cancer treatment. We designed and synthesized a new series of 1,3-dimethyl-6-nitroacridine derivatives as potential DNA-targeted anticancer agents. These compounds could partially intercalate into the calf thymus DNA, differing from the parent acridine. The results showed that the substitutions of the acridine ring had great effect on DNA binding affinity. The binding constants determined by UV-vis spectroscopy were found to be 105 M-1 grade. Anticancer activity of these compounds was screened using MTT assay. Most compounds inhibited 50% cancer cell growth at concentration below 30 μM, the results were consistent with the DNA binding ability. Compounds 1 and 6 were found to have more effective cytotoxicity, especially in human breast cancer cell lines. To investigate the action mechanism, we studied cell apoptosis, morphological changes, and cell cycle distribution in MCF-7 and MDA-MB-231 cells. Compounds 1 and 6 caused MCF-7 and MDA-MB-231 cells death due to apoptosis, and induced cell apoptosis in a dose-dependent manner. They also had significant effect on cell cycle progression and arrested cell cycle at G2/M phase. The results demonstrated that compounds 1 and 6 are promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Qian Zhou
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Hongshuai Wu
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Chaoqun You
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Zhiguo Gao
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Kai Sun
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Mingxin Wang
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Fanghui Chen
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| | - Baiwang Sun
- a School of Chemistry and Chemical Engineering , Southeast University , Nanjing , P. R. China
| |
Collapse
|
7
|
Zhou Q, You C, Zheng C, Gu Y, Gu H, Zhang R, Wu H, Sun B. 3-Nitroacridine derivatives arrest cell cycle at G0/G1 phase and induce apoptosis in human breast cancer cells may act as DNA-target anticancer agents. Life Sci 2018; 206:1-9. [PMID: 29738780 DOI: 10.1016/j.lfs.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
Abstract
DNA is considered to be one of the most promising targets for anticancer agents. Acridine analogues have anticancer activity based on DNA binding and topoisomerases inhibition. However, due to the side effects, resistance and low bioavailability, a few have entered into clinical usage and the mechanisms of action are not fully understood. Novel acridine derivatives are needed for effective cancer therapy. A series of novel 3-nitroacridine-based derivatives were synthesized, their DNA binding and anticancer activities were evaluated. The chemical modifications at position 9 of the 3-nitroacridine were crucial for DNA affinity, thus optimizing anticancer activity. UV-Vis and circular dichroism (CD) spectroscopy indicated interaction of compounds with DNA, and the binding modes were intercalation and groove binding. MTT assay and clonogenic assay showed that compounds 1, 2 and 3 had obvious cell growth inhibition effect. They induced cell apoptosis in human breast cancer cells in a dose-dependent manner, and exhibited anticancer effect via DNA damage as well as cell cycle arrest at G0/G1 phage. Using confocal fluorescent microscope, the apoptotic features were observed. The results suggested that compounds 1-3 with high DNA binding affinity and good inhibitory effect of cancer cell proliferation can be developed as prime candidates for further chemical optimization.
Collapse
Affiliation(s)
- Qian Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Chaoqun You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Cong Zheng
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Yawen Gu
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Hongchao Gu
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Rui Zhang
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Nanjing 210000, China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, China.
| |
Collapse
|
8
|
|
9
|
Mangueira VM, Batista TM, Brito MT, Sousa TKGD, Cruz RMDD, Abrantes RAD, Veras RC, Medeiros IAD, Medeiros KKDP, Pereira ALDC, Serafim VDL, Moura ROD, Sobral MV. A new acridine derivative induces cell cycle arrest and antiangiogenic effect on Ehrlich ascites carcinoma model. Biomed Pharmacother 2017; 90:253-261. [PMID: 28364597 DOI: 10.1016/j.biopha.2017.03.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/07/2017] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Acridine derivatives, including amsacrine, have antitumor activity. However, side effects, development of resistance and their low bioavailability, have limited their use. Herein, we described the synthesis, and evaluated the toxicity and antitumor activity of a new amsacrine analogous, the N'-(2-chloro-6-methoxy-acridin-9-yl)-2-cyano-3-(4-dimethylaminophenyl)-acrilohidrazida (ACS-AZ10). METHODS The compound was obtained in a linear pathway where the ASC-Az intermediate was obtained by coupling of 6,9-dichloro-3-methoxy-acridine and 2-ciany-acethohidrazide followed by condensation with the corresponding aldehyde. The toxicity of ACS-AZ10 was evaluated in mice using acute toxicity and micronucleus assays. Ehrlich ascites carcinoma model was used to investigate the antitumor activity and toxicity of ACS-AZ10 (7.5, 15 or 30mg/kg, i.p.), after nine days of treatment. Cell cycle and angiogenesis were also evaluated. RESULTS The ASC-AZ10 was obtained with satisfactory yields and its structure was confirmed by spectroscopic and spectrometric techniques. On acute toxicity study, ACS-AZ10 (2000mg/kg, i.p.) induced transient depressant effects on central nervous system. The LD50 was approximately 2500mg/kg. ACS-AZ10 (15 or 30mg/kg) displayed significant antitumor activity considering the tumor weight and volume, cell viability, and total Ehrlich cell count. ACS-AZ10 (7.5mg/kg) induced an increase in sub-G1 peak, suggesting apoptosis. At 15mg/kg ACS-AZ10 induced cell cycle arrest in G2/M phase and a reduction in the percentage of cells in G0/G1 and S phases, suggesting a pre-mitotic blockade. ACS-AZ10 reduced the microvessel density, indicating an antiangiogenic effect. Weak hematological, biochemical and histopathological toxicity were observed. The compound doesn't show genotoxicity in micronucleus assay. CONCLUSIONS ACS-AZ10 has potent antitumor activity in vivo along with low toxicity.
Collapse
Affiliation(s)
- Vivianne Mendes Mangueira
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Tatianne Mota Batista
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Monalisa Taveira Brito
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Tatyanna Kelvia Gomes de Sousa
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Ryldene Marques Duarte da Cruz
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Renata Albuquerque de Abrantes
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil.
| | - Robson Cavalcanti Veras
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil.
| | - Isac Almeida de Medeiros
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil.
| | | | - Ana Ligia da Costa Pereira
- Laboratório de Sintese e Vetorização Molecular, Departamento de Farmácia, Universidade Estadual da Paraíba, 58429-500 Campina Grande, Paraíba, Brazil.
| | - Vanessa de Lima Serafim
- Laboratório de Sintese e Vetorização Molecular, Departamento de Farmácia, Universidade Estadual da Paraíba, 58429-500 Campina Grande, Paraíba, Brazil.
| | - Ricardo Olímpio de Moura
- Laboratório de Sintese e Vetorização Molecular, Departamento de Farmácia, Universidade Estadual da Paraíba, 58429-500 Campina Grande, Paraíba, Brazil.
| | - Marianna Vieira Sobral
- Programa de Pós Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil.
| |
Collapse
|