1
|
Argyris PP, Saavedra F, Malz C, Stone IA, Wei Y, Boyle WS, Johnstone KF, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106304. [PMID: 36608459 PMCID: PMC9877195 DOI: 10.1016/j.oraloncology.2022.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA; Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Flávia Saavedra
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Stone
- Department of Immunology, Microbiology and Virology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - William S Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ali Khammanivong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Ajuba Overexpression Promotes Breast Cancer Chemoresistance and Glucose Uptake through TAZ-GLUT3/Survivin Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3321409. [PMID: 35178446 PMCID: PMC8844350 DOI: 10.1155/2022/3321409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
The LIM protein Ajuba has been implicated in the development of human cancers. To date, its expression pattern and biological significance in breast cancers (BC) have not been fully investigated. In the current study, we examined Ajuba protein levels in 93 invasive ductal carcinoma specimens by immunohistochemistry. The Ajuba expression level was elevated in breast cancer tissue compared with normal tissue. Ajuba overexpression is correlated with advanced tumor-node-metastasis (TNM) stage, positive node status, and adverse patient outcomes. The Ajuba protein level was also higher in BC cell lines compared to normal breast epithelial cell line MCF-10A. Ectopically expressed Ajuba in MCF-7 cells stimulated in vitro and in vivo cell growth, invasion, cell cycle progression, and decreased paclitaxel-induced apoptosis. RNA-sequencing (RNA-seq) followed by gene set enrichment analysis (GSEA) analysis showed that Ajuba overexpression regulated the Hippo signaling pathway. Ajuba overexpression also increased glucose uptake and increased expression of TAZ, GLUT3, and Survivin. TAZ knockdown abolished the role of Ajuba on GLUT3 and Survivin induction. The ChIP assay showed that TEAD4, a major TAZ binding transcription factor, could bind to the GLUT3 and Survivin promoter regions. In conclusion, our data demonstrated that elevated Ajuba expression is correlated with poor BC prognosis and regulated malignant behavior through TAZ-GLUT3/Survivin signaling in BC cells.
Collapse
|
3
|
Tan S, Fu L, Dong Q. AATF is Overexpressed in Human Bladder Cancer and Regulates Chemo-Sensitivity Through Survivin. Onco Targets Ther 2022; 14:5493-5505. [PMID: 35002255 PMCID: PMC8721289 DOI: 10.2147/ott.s319734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Dysregulation of apoptosis antagonizing transcription factor (AATF) has been reported to be closely associated with human cancers. However, its involvement in human bladder cancer (BC) remains unexplored. This study aimed to investigate the clinical significance and biological roles of AATF in human bladder cancers. Methods AATF protein expression was examined in 107 cases of bladder cancer tissues using immunohistochemistry. AATF plasmid transfection and small interfering RNA (siRNA) knockdown were performed in T24 and 5637 cell lines. CCK-8, colony formation, annexin V/PI, JC-1 staining, and Western blotting were carried out to investigate the biological roles and underlying mechanisms of AATF in bladder cancer cells. Results Our results showed that AATF expression was upregulated in human bladder cancer specimens and correlated with T stage. Analysis of the Oncomine database showed elevation of AATF mRNA in BC tissues. The Cancer Genome Atlas (TCGA) data suggested that high AATF expression correlated with poor patient survival. Western blotting showed that AATF protein expression was higher in BC cell lines compared to normal bladder transitional epithelial cell line SV-HUC-1. CCK-8 and colony assays showed that ectopic AATF expression upregulated cell growth rate and colony numbers. CCK-8, annexin V/propidium iodide (PI), JC-1 assays and Western blotting showed that AATF overexpression decreased cisplatin sensitivity, downregulated cisplatin-induced apoptosis and upregulated mitochondrial membrane potential, with decreased cytochrome c and cleaved-PARP expression. AATF siRNA knockdown showed the opposite effects. Mechanistically, AATF overexpression upregulated cyclin E and Survivin at both mRNA and protein levels. The decreased cisplatin sensitivity/apoptosis induced by ectopic AATF were reversed after treatment with Survivin inhibitor YM155. Conclusion Our results showed that AATF was overexpressed in human bladder cancers and promoted malignant behavior by regulating cyclin E and Survivin, indicating AATF could serve as a malignant biomarker and potential therapeutic target in BC.
Collapse
Affiliation(s)
- Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Wu B, Qi R, Liu X, Qian L, Wu Z. Rab18 overexpression promotes proliferation and chemoresistance through regulation of mitochondrial function in human gastric cancer. Onco Targets Ther 2018; 11:7805-7820. [PMID: 30464528 PMCID: PMC6225851 DOI: 10.2147/ott.s170829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Dysregulation of Rab18 has been implicated in human cancers. However, its clinical significance and biological function in gastric cancer have not been investigated. Methods We examined Rab18 expression in gastric cancer tissues using immunohistochemistry. We used SNU-1 and AGS cell lines for plasmid and siRNA transfection respectively. MTT, colony formation assay, cell cycle analysis, matrigel invasion, wound healing assay, AnnexinV/PI analysis and western blotting were used to examine the biological effect and mechanism of Rab18 in gastric cancer cell lines. Results Rab18 protein expression was upregulated in gastric cancer tissues and this correlated with advanced stage and poor prognosis. Rab18 overexpression promoted proliferation in vitro and in vivo. Cell cycle analysis showed that Rab18 overexpression upregulated, while its depletion downregulated S phase percentage. Matrigel invasion and wound healing assays indicated that Rab18 positively regulated SNU-1 cell invasion and migration while its knockdown inhibited AGS cell invasion and migration. Rab18 maintained cell viability and downregulated apoptosis after cisplatin treatment, with upregulated mitochondrial membrane potential and downregulated mitochondrial reactive oxygen species (ROS) production. Rab18 overexpression upregulated p-Rb, survivin while downregulated cytochrome c, cleaved caspase-3 and cleaved PARP. Conclusion In conclusion, our results indicate that Rab18 promoted gastric cancer growth and chemoresistance, possibly through regulation of mitochondrial function and survivin.
Collapse
Affiliation(s)
- Binge Wu
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Rui Qi
- Department of Ophthalmology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Xu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Lehua Qian
- Department of Ophthalmology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhongjun Wu
- Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
5
|
Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67:801-812. [PMID: 30083975 DOI: 10.1007/s00011-018-1173-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens. OBJECTIVE The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation. MATERIALS AND METHODS We conducted a review of studies published in the Medline (1966-2018), Scopus (2004-2018), ClinicalTrials.gov (2008-2018) and Google Scholar (2004-2018) databases, combined with studies found in the reference lists of the included studies. RESULTS Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis. CONCLUSION Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.
Collapse
|
6
|
Argyris PP, Slama ZM, Ross KF, Khammanivong A, Herzberg MC. Calprotectin and the Initiation and Progression of Head and Neck Cancer. J Dent Res 2018; 97:674-682. [PMID: 29443623 DOI: 10.1177/0022034518756330] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calprotectin (S100A8/A9), a heterodimeric complex of calcium-binding proteins S100A8 and S100A9, is encoded by genes mapping to the chromosomal locus 1q21.3 of the epidermal differentiation complex. Whereas extracellular calprotectin shows proinflammatory and antimicrobial properties by signaling through RAGE and TLR4, intracytoplasmic S100A8/A9 appears to be important for cellular development, maintenance, and survival. S100A8/A9 is constitutively expressed in myeloid cells and the stratified mucosal epithelia lining the oropharyngeal and genitourinary mucosae. While upregulated in adenocarcinomas and other cancers, calprotectin mRNA and protein levels decline in head and neck squamous cell carcinoma (HNSCC). S100A8/A9 is also lost during head and neck preneoplasia (dysplasia). Calprotectin decrease does not correlate with the clinical stage (TNM) of HNSCC. When expressed in carcinoma cells, S100A8/A9 downregulates matrix metalloproteinase 2 expression and inhibits invasion and migration in vitro. S100A8/A9 regulates cell cycle progression and decelerates cancer cell proliferation by arresting at the G2/M checkpoint in a protein phosphatase 2α-dependent manner. In HNSCC, S100A8 and S100A9 coregulate with gene networks controlling cellular development and differentiation, cell-to-cell signaling, and cell morphology, while S100A8/A9 appears to downregulate expression of invasion- and tumorigenesis-associated genes. Indeed, tumor formation capacity is attenuated in S100A8/A9-expressing carcinoma cells in vivo. Hence, intracellular calprotectin appears to function as a tumor suppressor in head and neck carcinogenesis. When compared with S100A8/A9-low HNSCC based on analysis of TCGA, S100A8/A9-high HNSCC shows significant upregulation of apoptosis-related genes, including multiple caspases. Accordingly, S100A8/A9 facilitates DNA damage responses in HNSCC, promotes apoptotic cell death, and confers sensitivity to cisplatin and X-radiation in vitro. In the tumor milieu, loss of S100A8/A9 strongly associates with poor squamous differentiation and higher tumor grading, EGFR upregulation, increased DNA methylation, and, finally, poorer overall survival for patients with HNSCC. Hence, intracellular calprotectin shows a multifaceted protective role against the development of HNSCC.
Collapse
Affiliation(s)
- P P Argyris
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Z M Slama
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - K F Ross
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A Khammanivong
- 2 Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - M C Herzberg
- 1 Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteomics 2017; 162:73-85. [DOI: 10.1016/j.jprot.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|