1
|
Azimian-Zavareh V, Dehghani-Ghobadi Z, Ebrahimi M, Mirzazadeh K, Nazarenko I, Hossein G. Wnt5A modulates integrin expression in a receptor-dependent manner in ovarian cancer cells. Sci Rep 2021; 11:5885. [PMID: 33723319 PMCID: PMC7970989 DOI: 10.1038/s41598-021-85356-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV-3 and OVCAR-3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates differently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)-2 and -5, were increased in different clones. However ROR-1, -2 expression levels were differently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV-3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR-3-derived clones, while this was decreased in SKOV-3-derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fibronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fibronectin. Accordingly, we observed significantly higher expression levels of ITGAV and ITGB3 in human high-grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD-5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fibronectin attachment.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Kian Mirzazadeh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Ghamartaj Hossein
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Li G, Wei W, Suo L, Zhang C, Yu H, Liu H, Guo Q, Zhen X, Yu Y. Low-Dose Aspirin Prevents Kidney Damage in LPS-Induced Preeclampsia by Inhibiting the WNT5A and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12:639592. [PMID: 33790866 PMCID: PMC8006287 DOI: 10.3389/fendo.2021.639592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy-related disease, and patients usually present with a high inflammatory response. Previous studies have suggested that aspirin (ASP) may have a role in alleviating the pathogenesis of preeclampsia. However, whether ASP can improve kidney damage and the mechanism for improving it is currently unclear. Here we optimized a lipopolysaccharide (LPS)-induced PE mouse model to identify the role of ASP in renal protection. We found that ASP treatment ameliorated LPS-induced renal failure and pathological changes, the tubular injury was significantly attenuated by ASP. Administration of ASP decreased the renal expression of pro-inflammatory factors, resulting in reduced kidney inflammation. The number of GALECTIN-3-positive cells was reduced, and the up-regulation of IL-6 and TNF-α was decreased. In addition, ASP also suppressed renal cell apoptosis and oxidative stress. An in vitro study indicated that ASP relieved LPS-induced HK-2 cell damage by inhibiting WNT5A/NF-κB signaling. Collectively, our data suggest that ASP is a useful therapeutic option for PE-related kidney injury.
Collapse
Affiliation(s)
- Guanlin Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Lingge Suo
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chun Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Department of Ophthalmology, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Haiyan Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
The regulatory role of SFRP5/WNT5A axis in allergic rhinitis through inhibiting JNK pathway activation and lowering mucin generation in human nasal epithelial cells. Exp Mol Pathol 2020; 118:104591. [PMID: 33285209 DOI: 10.1016/j.yexmp.2020.104591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Allergic rhinitis (AR) is tightly associated with type 2 inflammation. SFRP5 combined with WNT5A mainly inhibits chronic inflammatory response, atherosclerosis, and other metabolic disorders. However, the effect of SFRP5/WNT5A axis on recombinant human interleukin-13 (rhIL-13)-induced inflammation has not been studied. In this study, we aimed to investigate whether secreted frizzled-related protein 5 (SFRP5) could modulate the production of cytokines relevant to eosinophil infiltration and mucin secretion through blocking the activation of Wnt family 5A (WNT5A) signaling pathway. A mouse model of AR demonstrated low expression of SFRP5 and high expression of WNT5A, and indicated that the number of eosinophil and goblet cells was increased, concomitant with elevated IL-13, colony stimulating factor 2 (CSF2), chemokine ligand 11 (CCL11), Mucin 4, and Mucin 5AC levels. Furthermore, lentivirus-SFRP5 overexpression up-regulated the expression of SFRP5 but down-regulated WNT5A level, and inhibited the activation of JNK pathway via decreasing p-JNK1/2 (Thr183/Tyr185) and p-c-Jun (Ser73) protein expressions in rhIL-13-treated human nasal epithelial cells (HNEpCs). Noticeably, SFRP5 overexpression markedly reduced rhIL-13-induced inflammatory protein and mucin generation through lowered CSF2, CCL11, Mucin 4, as well as Mucin 5AC levels. Taken together, these findings confirmed the regulatory role of SFRP5/WNT5A axis in rhIL-13-mediated inflammatory response in HNEpCs.
Collapse
|
5
|
Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 2020; 133:110946. [PMID: 33212376 DOI: 10.1016/j.biopha.2020.110946] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is one of the key cascades regulating normal tissue development and has been tightly associated with cancer. The Wnt signaling can be subdivided into two categories: canonical & noncanonical. Noncanonical Wnt signaling pathways mainly include Wnt/PCP (planar cell polarity) signaling and Wnt-cGMP (cyclic guanosine monophosphate) /Ca2+ signaling. It has been well studied by previous researches that noncanonical Wnt signaling regulates multiple cell functions including proliferation, differentiation, adhesion, polarity, motility, and migration. The aberrant activation or inhibition of noncanonical Wnt signaling is crucial in cancer progression, exerting both oncogenic and tumor-suppressive effects. Recent studies show the involvement of noncanonical Wnt in regulating cancer cell invasion, metastasis, metabolism, and inflammation. Here, we review current insights into novel components of non-canonical signalings and describe their involvement in various cancer types. We also summarize recent biological and clinical discoveries that outline non-canonical Wnt signaling in tumorigenesis. Finally, we provide an overview of current strategies to target non-canonical Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of General Surgery, Zhejiang Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Yin Tang
- Omni Family Health, Bakersfield, CA, United States
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
6
|
Lu W, Wu Y, Lu CX, Zhu T, Ren ZL, Yu Z. Bioinformatics analysis of prognostic value and prospective pathway signal of miR-30a in ovarian cancer. J Ovarian Res 2020; 13:120. [PMID: 33004058 PMCID: PMC7532093 DOI: 10.1186/s13048-020-00722-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Objective MicroRNAs (MiRNAs) is thought to play a critical role in the initiation and progress of ovarian cancer (OC). Although miRNAs has been widely recognized in ovarian cancer, the role of hsa-miR-30a-5p (miR-30a) in OC has not been fully elucidated. Methods Three mRNA datasets of normal ovarian tissue and OC, GSE18520,GSE14407 and GSE36668, were downloaded from Gene Expression Omnibus (GEO) to find the differentially expressed gene (DEG). Then the target genes of hsa-miR-30a-5p were predicted by miRWALK3.0 and TargetScan. Then, the gene overlap between DEG and the predicted target genes of miR-30a in OC was analyzed by Gene Ontology (GO) enrichment analysis. Protein-protein interaction (PPI) network was conducted by STRING and Cytoscape, and the effect of HUB gene on the outcome of OC was analyzed. Results A common pattern of up-regulation of miR-30a in OC was found. A total of 225 DEG, were identified, both OC-related and miR-30a-related. Many DEG are enriched in the interactions of intracellular matrix tissue, ion binding and biological process regulation. Among the 10 major Hub genes analyzed by PPI, five Hub genes were significantly related to the overall poor survival of OC patients, in which the low expression of ESR1,MAPK10, Tp53 and the high expression of YKT,NSF were related to poor prognosis of OC. Conclusion Our results indicate that miR-30a is of significance for the biological progress of OC.
Collapse
Affiliation(s)
- Weijia Lu
- Guangzhou University of Chinese Medicine, No.232, Waihuandong Road, University Town, Panyu District, Guangzhou, 510006, Guangdong, China
| | - Yunyu Wu
- Department of Gynaecological Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong Province, China
| | - Can Xiong Lu
- Laboratory Department, Foshan Sanshui hospital of Traditional Chinese Medicine, Foshan, 528100, Guangdong, China
| | - Ting Zhu
- Division of Laboratory Science, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Zhong Lu Ren
- College of Medical Information Engineering Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78, Hengzhigang Road, Yuexiu District, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
7
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
8
|
Hossein G, Halvaei S, Heidarian Y, Dehghani‐Ghobadi Z, Hassani M, Hosseini H, Naderi N, Sheikh Hassani S. Pectasol-C Modified Citrus Pectin targets Galectin-3-induced STAT3 activation and synergize paclitaxel cytotoxic effect on ovarian cancer spheroids. Cancer Med 2019; 8:4315-4329. [PMID: 31197964 PMCID: PMC6675724 DOI: 10.1002/cam4.2334] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/28/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Here we sought to determine the relationship between STAT3 activity and Galectin-3 (Gal-3) and to investigate the cytotoxic effect of PectaSol-C Modified Citrus Pectin (Pect-MCP) as a specific competitive inhibitor of Galectin-3 (Gal-3) in combination with Paclitaxel (PTX) to kill the ovarian cancer cell SKOV-3 multicellular tumor spheroid (MCTS). To this order, SKOV-3 cells in 2D and 3D cultures were treated with exogenous Gal-3 for the assessment of STAT3 activity. Two-way ANOVA main effect and IC50 of each drug Paclitaxel (PTX) and Pect-MCP or in combination were obtained from MTT assay results. The phosphorylated STAT3 levels, migration, invasion, integrin mRNA and p-AKTser473 levels were assessed in the absence or presence of each drug alone or in combination. Gal-3 expression levels were assessed in human serous ovarian cancer (SOC) specimens and its correlation with different integrin mRNA levels was further assessed. Our results showed that Gal-3 expression level was significantly increased in MCTS compared to monolayer SKOV-3 cells which triggered STAT3 phosphorylation. Moreover, Pect-MCP synergized with PTX to kill SKOV3 MCTS through abrogation of STAT3 activity and reduced expression of its downstream target HIF-1α, reduced integrin mRNA levels, and subsequently decreased AKT activity. There were higher expression levels of Gal-3 in human high-grade SOC specimens compared to the normal ovary and borderline SOC which positively and significantly correlated with α5, β2 and β6 integrin mRNA levels. Together, these results revealed for the first time that Pect-MCP could be considered as a potential drug to enhance the PTX effect on ovarian cancer cells MCTS through inhibition of STAT3 activity.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Sina Halvaei
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Yassaman Heidarian
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
- Department of Cell and Molecular Biology, Kish International CampusUniversity of TehranKishIran
| | - Zeinab Dehghani‐Ghobadi
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Mina Hassani
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Homa Hosseini
- Department of Animal Biology, Developmental Biology Laboratory, College of ScienceUniversity of TehranTehranIran
| | - Nima Naderi
- Neuroscience Research CenterShahid Beheshti University (Medical Sciences)TehranIran
| | - Shahrzad Sheikh Hassani
- Department of Gynecology Oncology ValiasrImam Khomeini Hospital, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
9
|
Gao Y, Wen Q, Hu S, Zhou X, Xiong W, Du X, Zhang L, Fu Y, Yang J, Zhou C, Zhang Z, Li Y, Liu H, Huang Y, Ma L. IL-36γ Promotes Killing of Mycobacterium tuberculosis by Macrophages via WNT5A-Induced Noncanonical WNT Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:922-935. [PMID: 31235551 DOI: 10.4049/jimmunol.1900169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis, which primarily infects mononuclear phagocytes, remains the leading bacterial cause of enormous morbidity and mortality because of bacterial infections in humans throughout the world. The IL-1 family of cytokines is critical for host resistance to M. tuberculosis As a newly discovered subgroup of the IL-1 family, although IL-36 cytokines have been proven to play roles in protection against M. tuberculosis infection, the antibacterial mechanisms are poorly understood. In this study, we demonstrated that IL-36γ conferred to human monocyte-derived macrophages bacterial resistance through activation of autophagy as well as induction of WNT5A, a reported downstream effector of IL-1 involved in several inflammatory diseases. Further studies showed that WNT5A could enhance autophagy of monocyte-derived macrophages by inducing cyclooxygenase-2 (COX-2) expression and in turn decrease phosphorylation of AKT/mTOR via noncanonical WNT signaling. Consistently, the underlying molecular mechanisms of IL-36γ function are also mediated by the COX-2/AKT/mTOR signaling axis. Altogether, our findings reveal a novel activity for IL-36γ as an inducer of autophagy, which represents a critical inflammatory cytokine that control the outcome of M. tuberculosis infection in human macrophages.
Collapse
Affiliation(s)
- Yuchi Gao
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenjing Xiong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin Epigenetics 2019; 11:43. [PMID: 30850015 PMCID: PMC6408861 DOI: 10.1186/s13148-019-0644-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background A multitude of recent studies has observed common epigenetic changes develop in tumour cells of multiple lineages following exposure to stresses such as hypoxia, chemotherapeutics, immunotherapy or targeted therapies. A significant increase in the transcriptionally repressive mark trimethylated H3K9 (H3K9me3) is becoming associated with treatment-resistant phenotypes suggesting upstream mechanisms may be a good target for therapy. We have reported that the increase in H3K9me3 is derived from the methyltransferases SETDB1 and SETDB2 following treatment in melanoma, lung, breast and colorectal cancer cell lines, as well as melanoma patient data. Other groups have observed a number of characteristics such as epigenetic remodelling, increased interferon signalling, cell cycle inhibition and apoptotic resistance that have also been reported by us suggesting these independent studies are investigating similar or identical phenomena. Main body Firstly, this review introduces reports of therapy-induced reprogramming in cancer populations with highly similar slow-cycling phenotypes that suggest a role for both IFN signalling and epigenetic remodelling in the acquisition of drug tolerance. We then describe plausible connections between the type 1 IFN pathway, slow-cycling phenotypes and these epigenetic mechanisms before reviewing recent evidence on the roles of SETDB1 and SETDB2, alongside their product H3K9me3, in treatment-induced reprogramming and promotion of drug resistance. The potential mechanisms for the activation of SETDB1 and SETDB2 and how they might arise in treatment is also discussed mechanistically, with a focus on their putative induction by inflammatory signalling. Moreover, we theorise their timely role in attenuating inflammation after their activation in order to promote a more resilient phenotype through homeostatic coordination of H3K9me3. We also examine the relatively uncharacterized functions of SETDB2 with some comparison to the more well-known qualities of SETDB1. Finally, an emerging overall mechanism for the epigenetic maintenance of this transient phenotype is outlined by summarising the collective literature herein. Conclusion A number of converging phenotypes outline a stress-responsive mechanism for SETDB1 and SETDB2 activation and subsequent increased survival, providing novel insights into epigenetic biology. A clearer understanding of how SETDB1/2-mediated transcriptional reprogramming can subvert treatment responses will be invaluable in improving length and efficacy of modern therapies.
Collapse
|
11
|
Azimian-Zavareh V, Hossein G, Ebrahimi M, Dehghani-Ghobadi Z. Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp Cell Res 2018; 369:90-104. [PMID: 29753625 DOI: 10.1016/j.yexcr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The present study investigated the role of Wnt11 in multicellular tumor spheroid-like structures (MCTS) ovarian cancer cell proliferation, migration and invasion in vitro and in vivo tumorigenesis and metastasis in xenograft nude mice model. Moreover, samples from human serous ovarian cancer (SOC) were used to assess the association of Wnt11 with integrins and cadherins. The data showed that Wnt11 overexpressing SKOV-3 cells became more compact accompanied by increased expression of E-and N-cadherin and lower expression of EpCAM and CD44. The α5, β2, β3 and β6 integrin subunits expression levels were significantly reduced in Wnt11 overexpressing cells accompanied with significantly reduced disaggregation of Wnt11 overexpressing SKOV-3 MCTS on ECM components. Moreover, Wnt11 overexpressing SKOV-3 MCTS showed decreased migration, invasion as well as no tumor growth and metastasis in vivo. We found that Wnt11 significantly and negatively correlated with ITGB2, ITGB6, and EpCAM and positively with CDH-1 in high-grade SOC specimens. Our results suggest that Wnt11 impedes MCTS attachment to ECM components and therefore can affect ovarian cancer progression.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Xiang L, Rong G, Zhao J, Wang Z, Shi F. Identification of candidate genes associated with tubal origin of high-grade serous ovarian cancer. Oncol Lett 2018; 15:7769-7775. [PMID: 29731902 PMCID: PMC5920857 DOI: 10.3892/ol.2018.8346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023] Open
Abstract
Evidence indicates that high-grade serous ovarian carcinoma arises from the fallopian tube, rather than ovarian surface epithelium. This is termed the 'tubal origin' theory. The aim of the present study was to compare the immunophenotype and gene expression profiling among high-grade serous ovarian carcinoma (HGSOC), fallopian tube epithelium (FTE) and ovarian surface epithelium (OSE) based on tubal origin theory, and identify the differential genes associated with ovarian carcinogenesis. A total of 61 cases of fresh tissue samples including 21 cases of HGSOC, 20 cases of OSE, and 20 cases of FTE were obtained following surgical resection. Immunostaining was performed to detect the expression of PAX8, which has been considered as a potential immunophenotype marker of Müllerian origin. Illumina BeadChip was applied for gene expression profiling. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the differential expression of candidate genes between HGSOC and FTE. The results of the present study demonstrated that PAX8 was highly expressed in HGSOC (19/21, 90.4%) and FTE (20/20, 100%), but not in OSE (3/20, 14.3%). A dendrogram generated by cluster analysis indicated a higher similarity of gene expression profile between HGSOC and FTE than OSE. A total of 2,412 differentially expressed genes were identified (absolute fold change >2) between HGSOC and FTE, including 822 upregulated genes in cancer and 1,590 downregulated genes. S100 calcium binding protein P, Ras-interacting protein 1, Wnt family member 5A, tumor-associated calcium signal transducer 2, Dickkopf Wnt signaling pathway inhibitor 3 and tumor suppressor candidate 3 genes were identified as candidate markers, of which the differential gene expression in HGSOC and FTE was confirmed by RT-qPCR (P<0.05). The results indicate the presence of a greater similarity in the immunophenotype and gene expression profile of HGSOC and FTE, when compared with OSE, which was consistent with the tubal origin theory of HGSOC.
Collapse
Affiliation(s)
- Li Xiang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Guohua Rong
- Department of Breast Surgery, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266000, P.R. China
| | - Jing Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenyan Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fengfeng Shi
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
13
|
Hossein G, Arabzadeh S, Salehi-Dulabi Z, Dehghani-Ghobadi Z, Heidarian Y, Talebi-Juybari M. Wnt5A regulates the expression of ROR2 tyrosine kinase receptor in ovarian cancer cells. Biochem Cell Biol 2017; 95:609-615. [PMID: 28538104 DOI: 10.1139/bcb-2016-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wnt5A and receptor tyrosine kinase-like orphan receptor 2 (ROR2) proteins both regulate developmental processes, cell movement, and cell polarity. The purpose of this study was to evaluate a possible regulatory role of Wnt5A on ROR2 expression in human ovarian cancer cell lines. Moreover, the expression of Wnt5A and ROR2 mRNA and protein levels were assessed in human epithelial serous ovarian cancer (HSOC) specimens. ROR2 was strongly decreased in cells treated with siRNA against Wnt5A compared with scramble-treated or lipofectamine-treated cells (P < 0.001). There was 34% decreased cell invasion (P < 0.01) in Wnt5A knock-down cells compared with lipofectamine-treated and scramble-treated cells; however, cell invasion remained unchanged upon addition of anti-ROR2 antibody to the culture media of these cells. In contrast, addition of anti-ROR2 antibody to the culture media for lipofectamine-treated and scramble-treated cells led to 32% decreased cell invasion (P < 0.01). Normal ovarian specimens were negative, and variable immunostaining was observed in HSOC for Wnt5A and ROR2 immunostaining. Furthermore, there was a positive correlation between Wnt5A and ROR2 expression in high-grade SOC samples at the mRNA level (P < 0.05; r = 0.38). This is the first report to show the regulatory role of Wnt5A on ROR2 expression in ovarian cancer.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yassaman Heidarian
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Talebi-Juybari
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Wnt5a Signaling in Cancer. Cancers (Basel) 2016; 8:cancers8090079. [PMID: 27571105 PMCID: PMC5040981 DOI: 10.3390/cancers8090079] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.
Collapse
|