1
|
Zhao Y, Lin D, Zhu X, Yan J, Liang Y, Wang Y, Dai T, Zhang Z, Wang S. SDF-1 alleviates osteoarthritis by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway. Arthritis Res Ther 2025; 27:51. [PMID: 40055825 PMCID: PMC11887228 DOI: 10.1186/s13075-025-03509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common form of joint disease. Currently, OA treatment is limited to controlling symptoms. Our previous study showed that stromal cell-derived factor 1 (SDF-1) delayed the progression of OA to a certain extent. The aim of this study was to explore the specific mechanism of SDF-1 in OA. MATERIALS AND METHODS OA chondrocytes and a collagen-induced osteoarthritis (CIOA) mouse model were used as in vitro and in vivo models, respectively. SDF-1 was used to treat OA in vitro and in vivo. To explore the mechanism of SDF-1 in OA treatment, we pretreated chondrocytes with a Sirt 3 inhibitor and assessed mitochondrial function and then analysed related indicators of cartilage anabolic and cartilage metabolism. RESULTS SOD2 and PGC-1α levels were significantly lower in OA chondrocytes and the cartilage of CIOA model mice than in normal chondrocytes, and mitochondrial dysfunction occurred in OA. After treating OA chondrocytes and CIOA model mice with exogenous SDF-1, mitochondrial dysfunction and abnormal biomarkers of OA normalized. The pretreatment of OA chondrocytes with a Sirt 3 inhibitor or mitochondrial function inhibitor before SDF-1 exposure reversed these changes. CONCLUSIONS SDF-1 can alleviate OA by resolving mitochondrial dysfunction through the activation of the Sirt3/PGC-1α signalling pathway, and therefore, SDF-1 may be a good candidate as a new treatment for OA.
Collapse
Affiliation(s)
- Yanping Zhao
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Dan Lin
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Xiaoying Zhu
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Jingyao Yan
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Yan Liang
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Yanli Wang
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Tianqi Dai
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China
| | - Zhiyi Zhang
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China.
| | - Shuya Wang
- Department of Rheumatology, The Affiliated hospital of Harbin Medical University, NO.23 Youzheng St, Harbin, 150001, China.
| |
Collapse
|
2
|
Pákozdi K, Emri T, Antal K, Pócsi I. Global Transcriptomic Changes Elicited by sodB Deletion and Menadione Exposure in Aspergillus nidulans. J Fungi (Basel) 2023; 9:1060. [PMID: 37998866 PMCID: PMC10671992 DOI: 10.3390/jof9111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.
Collapse
Affiliation(s)
- Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly Catholic University, H-3300 Eger, Hungary;
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Botchway BOA, Okoye FC, Chen Y, Arthur WE, Fang M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis 2022; 13:87-102. [PMID: 35111364 PMCID: PMC8782546 DOI: 10.14336/ad.2021.0616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a current public health challenge and will remain until the development of an effective intervention. However, developing an effective treatment for the disease requires a thorough understanding of its etiology, which is currently lacking. Although several studies have shown the association between oxidative damage and AD, only a few have clarified the specific mechanisms involved. Herein, we reviewed recent preclinical and clinical studies that indicated the significance of oxidative damage in AD, as well as potential antioxidants. Although several factors regulate oxidative stress in AD, we centered our investigation on apolipoprotein E and the gut microbiome. Apolipoprotein E, particularly apolipoprotein E-ε4, can impair the structural facets of the mitochondria. This, in turn, can minimize the mitochondrial functionality and result in the progressive build-up of free radicals, eventually leading to oxidative stress. Similarly, the gut microbiome can influence oxidative stress to a significant degree via its metabolite, trimethylamine N-oxide. Given the various roles of these two factors in modulating oxidative stress, we also discuss the possible relationship between them and provide future research directions.
Collapse
Affiliation(s)
- Benson OA Botchway
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| | - Favour C Okoye
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Chen
- Neurosurgery Department, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - William E Arthur
- Department of Internal Medicine, Eastern Regional Hospital, Koforidua, Ghana
| | - Marong Fang
- Gastroenterology Department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Li J, Dai X, He X, Yang R, Xia Z, Xiao H. Effect of SOD2 methylation on mitochondrial DNA4834-bp deletion mutation in marginal cells under oxidative stress. Bosn J Basic Med Sci 2020; 20:70-77. [PMID: 31465718 PMCID: PMC7029205 DOI: 10.17305/bjbms.2019.4353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Presbycusis, or age-related hearing loss, is a prevalent disease that severely affects the physical and mental health of the elderly. Oxidative stress and mitochondrial (mt)DNA deletion mutation are considered as major factors in the pathophysiology of age-related hearing loss. The 4977-bp deletion in human mtDNA (common deletion, corresponding to the 4834-bp mtDNA deletion in rats) is suggested to be closely associated with the pathogenesis of age-related hearing loss. Superoxide dismutase 2 (SOD2), an isoform of SOD that is exclusively expressed in the intracellular mitochondrial matrix, plays a crucial role in oxidative resistance against mitochondrial superoxide. Previous research has shown that methylation of the promoter region of the SOD2 gene decreased the expression of SOD2 in marginal cells (MCs) extracted from the inner ear of rats subjected to D-galactose-induced mtDNA4834 deletion. However, the relationship between SOD2 methylation and mtDNA4834 deletion under oxidative stress remains to be elucidated. Herein, an oxidative damage model was established in the extracted MCs using hydrogen peroxide (H2O2), which increased the methylation level of SOD2 and the copy number of mtDNA4834 mutation in MCs. Decreasing the methylation level of SOD2 using 5-azacytidine, a DNA methylation inhibitor, reduced oxidative stress and the copy number of mtDNA4834 mutation and inhibited H2O2-induced apoptosis. The present work demonstrates that decreasing the methylation of SOD2 suppresses the mtDNA4834 deletion in MCs under oxidative stress and provides potential insights to the intervention therapy of aging-related hearing loss.
Collapse
Affiliation(s)
- Jun Li
- Department of Otorhinolaryngology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Dai
- Laboratory of Reproduction, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian He
- Central Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Yang
- Department of Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongfang Xia
- Department of Otorhinolaryngology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Biological Sample Bank, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Cell organelles and yeast longevity: an intertwined regulation. Curr Genet 2019; 66:15-41. [PMID: 31535186 DOI: 10.1007/s00294-019-01035-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
Organelles are dynamic structures of a eukaryotic cell that compartmentalize various essential functions and regulate optimum functioning. On the other hand, ageing is an inevitable phenomenon that leads to irreversible cellular damage and affects optimum functioning of cells. Recent research shows compelling evidence that connects organelle dysfunction to ageing-related diseases/disorders. Studies in several model systems including yeast have led to seminal contributions to the field of ageing in uncovering novel pathways, proteins and their functions, identification of pro- and anti-ageing factors and so on. In this review, we present a comprehensive overview of findings that highlight the role of organelles in ageing and ageing-associated functions/pathways in yeast.
Collapse
|
6
|
Hwang C, Yoo J, Jung GY, Joo SH, Kim J, Cha A, Han JG, Choi NS, Kang SJ, Lee SY, Kwak SK, Song HK. Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium-Oxygen Batteries. ACS NANO 2019; 13:9190-9197. [PMID: 31319025 DOI: 10.1021/acsnano.9b03525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species or superoxide (O2-), which damages or ages biological cells, is generated during metabolic pathways using oxygen as an electron acceptor in biological systems. Superoxide dismutase (SOD) protects cells from superoxide-triggered apoptosis by converting superoxide to oxygen and peroxide. Lithium-oxygen battery (LOB) cells have the same aging problems caused by superoxide-triggered side reactions. We transplanted the function of SOD of biological systems into LOB cells. Malonic acid-decorated fullerene (MA-C60) was used as a superoxide disproportionation chemocatalyst mimicking the function of SOD. As expected, MA-C60 as the superoxide scavenger improved capacity retention along charge/discharge cycles successfully. A LOB cell that failed to provide a meaningful capacity just after several cycles at high current (0.5 mA cm-2) with 0.5 mAh cm-2 cutoff survived up to 50 cycles after MA-C60 was introduced to the electrolyte. Moreover, the SOD-mimetic catalyst increased capacity, e.g., more than a 6-fold increase at 0.2 mA cm-2. The experimentally observed toroidal morphology of the final discharge product of oxygen reduction (Li2O2) and density functional theory calculation confirmed that the solution mechanism of Li2O2 formation, more beneficial than the surface mechanism from the capacity-gain standpoint, was preferred in the presence of MA-C60.
Collapse
Affiliation(s)
| | - JongTae Yoo
- R&D Investment Planning Team , Korea Institute of Science & Technology Evaluation and Planning (KISTEP) , Seoul 06775 , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamamoto K, Kushida M, Tsuduki T. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology 2018; 19:367-383. [DOI: 10.1007/s10522-018-9764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
|
8
|
Zhang D, Han J, Li Y, Yuan B, Zhou J, Cheong L, Li Y, Lu C, Su X. Tuna Oil Alleviates d-Galactose Induced Aging in Mice Accompanied by Modulating Gut Microbiota and Brain Protein Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5510-5520. [PMID: 29656644 DOI: 10.1021/acs.jafc.8b00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To discern whether tuna oil modulates the expression of brain proteins and the gut microbiota structure during aging induced by d-galactose, we generated an aging mouse model with d-galactose treatment, and the mice showed aging and memory deterioration symptoms according to physiological and biochemical indices. Treatment with different doses of tuna oil alleviated the symptoms; the high dose showed a better effect. Subsequently, brain proteomic analysis showed the differentially expressed proteins were involved in damaged synaptic system repairment and signal transduction system enhancement. In addition, tuna oil treatment restored the diversity of gut microbiota, 27 key operational taxonomic units, which were identified using a redundancy analysis and were significantly correlated with at least one physiological index and three proteins or genes. These findings suggest that the combination of proteomics and gut microbiota is an effective strategy to gain novel insights regarding the effect of tuna oil treatment on the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Dijun Zhang
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Jiaojiao Han
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Yanyan Li
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Bei Yuan
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Jun Zhou
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Lingzhi Cheong
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Ye Li
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Chenyang Lu
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Xiurong Su
- School of Marine Science , Ningbo University , Ningbo 315211 , China
| |
Collapse
|
9
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
10
|
Senoo T, Kawano S, Ikeda S. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe. Cell Biol Int 2016; 41:276-286. [PMID: 28032397 DOI: 10.1002/cbin.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022]
Abstract
Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging.
Collapse
Affiliation(s)
- Takanori Senoo
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
11
|
Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe. J Microbiol Methods 2016; 127:77-81. [PMID: 27236021 DOI: 10.1016/j.mimet.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
Abstract
Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging.
Collapse
|