1
|
Hirose H, Fujimasa S, Kanemaru S, Yoshimoto S, Matsumoto N, Anan H, Matsuzaki E. Sphingosine-1-phosphate receptor 1-mediated odontogenic differentiation of mouse apical papilla-derived stem cells. J Dent Sci 2024; 19:2323-2331. [PMID: 39347102 PMCID: PMC11437261 DOI: 10.1016/j.jds.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Sphingosine-1-phosphate (S1P) exhibits receptor-mediated physiological effects by facilitating the differentiation of mesenchymal stem cells toward the osteoblast lineage. This study aimed to determine the effect of S1P on odontogenic differentiation of mouse immortalized stem cells of dental apical papilla (iSCAP) and assess the distribution of the S1P receptor 1 (S1PR1) in the apical papilla and the root canal wall of immature rat molars. Materials and methods Immunostaining for S1PR1 was conducted at the apex of the rat mandibular first molar and within the root canal wall. The iSCAP was treated with S1P and bone morphogenetic protein (BMP)-9 (for comparison), and the expression levels of the odontogenic differentiation marker were evaluated via real-time reverse-transcriptase quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Mineralization and lipid droplet formation were evaluated via Alizarin red and Oil red O staining. Results S1PR1-positive cells were expressed in areas of both apical papilla and dentin-pulp interface of root canal wall. During the odontogenic differentiation of iSCAP, S1P and BMP-9 increased the expression of the differentiation marker mRNA and secreted proteins including dentin sialophosphoprotein, dentin matrix phosphoprotein 1, and matrix extracellular phosphoglycoprotein. The S1PR1 signaling pathway is involved in the action of S1P, but not that of BMP-9. S1PR1 signaling also facilitated mineralization in iSCAP and suppressed the differentiation of these cells into adipocytes. Conclusion S1P induced odontogenic differentiation of iSCAP through S1PR1. Furthermore, S1PR1-positive cells were expressed in the apical papilla of immature rat molars and in the dentin-pulp interface where odontoblast-like cells exist.
Collapse
Affiliation(s)
- Haruna Hirose
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Seishiro Fujimasa
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shingo Kanemaru
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | | | - Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
2
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
3
|
Frost K, Lewis JW, Jones SW, Edwards JR, Naylor AJ, McGettrick HM. The Species Effect: Differential Sphingosine-1-Phosphate Responses in the Bone in Human Versus Mouse. Int J Mol Sci 2024; 25:5118. [PMID: 38791156 PMCID: PMC11121697 DOI: 10.3390/ijms25105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The deterioration of osteoblast-led bone formation and the upregulation of osteoclast-regulated bone resorption are the primary causes of bone diseases, including osteoporosis. Numerous circulating factors play a role in bone homeostasis by regulating osteoblast and osteoclast activity, including the sphingolipid-sphingosine-1-phosphate (S1P). However, to date no comprehensive studies have investigated the impact of S1P activity on human and murine osteoblasts and osteoclasts. We observed species-specific responses to S1P in both osteoblasts and osteoclasts, where S1P stimulated human osteoblast mineralisation and reduced human pre-osteoclast differentiation and mineral resorption, thereby favouring bone formation. The opposite was true for murine osteoblasts and osteoclasts, resulting in more mineral resorption and less mineral deposition. Species-specific differences in osteoblast responses to S1P were potentially explained by differential expression of S1P receptor 1. By contrast, human and murine osteoclasts expressed comparable levels of S1P receptors but showed differential expression patterns of the two sphingosine kinase enzymes responsible for S1P production. Ultimately, we reveal that murine models may not accurately represent how human bone cells will respond to S1P, and thus are not a suitable model for exploring S1P physiology or potential therapeutic agents.
Collapse
Affiliation(s)
- Kathryn Frost
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (K.F.); (J.W.L.); (S.W.J.); (A.J.N.)
| | - Jonathan W. Lewis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (K.F.); (J.W.L.); (S.W.J.); (A.J.N.)
| | - Simon W. Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (K.F.); (J.W.L.); (S.W.J.); (A.J.N.)
| | - James R. Edwards
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK;
| | - Amy J. Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (K.F.); (J.W.L.); (S.W.J.); (A.J.N.)
| | - Helen M. McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (K.F.); (J.W.L.); (S.W.J.); (A.J.N.)
| |
Collapse
|
4
|
Xu X, Han Y, Zhu T, Fan F, Wang X, Liu Y, Luo D. The role of SphK/S1P/S1PR signaling pathway in bone metabolism. Biomed Pharmacother 2023; 169:115838. [PMID: 37944444 DOI: 10.1016/j.biopha.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
There are a large number of people worldwide who suffer from osteoporosis, which imposes a huge economic burden, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine kinase (SphK) is an enzyme that plays a crucial role in the synthesis of sphingosine-1-phosphate (S1P). S1P with paracrine and autocrine activities that act through its cell surface S1P receptors (S1PRs) and intracellular signals. In osteoporosis, S1P is indispensable for both normal and disease conditions. S1P has complicated roles in regulating osteoblast and osteoclast, respectively, and there have been exciting developments in understanding how SphK/S1P/S1PR signaling regulates these processes in response to osteoporosis therapy. Here, we review the proliferation, differentiation, apoptosis, and functions of S1P, specifically detailing the roles of S1P and S1PRs in osteoblasts and osteoclasts. Finally, we focus on the S1P-based therapeutic approaches in bone metabolism, which may provide valuable insights into potential therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yi Han
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Tianxin Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Faxin Fan
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Xin Wang
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Yuqing Liu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China
| | - Duosheng Luo
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, China.
| |
Collapse
|
5
|
Frost K, Naylor AJ, McGettrick HM. The Ying and Yang of Sphingosine-1-Phosphate Signalling within the Bone. Int J Mol Sci 2023; 24:6935. [PMID: 37108099 PMCID: PMC10139073 DOI: 10.3390/ijms24086935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bone remodelling is a highly active and dynamic process that involves the tight regulation of osteoblasts, osteoclasts, and their progenitors to allow for a balance of bone resorption and formation to be maintained. Ageing and inflammation are risk factors for the dysregulation of bone remodelling. Once the balance between bone formation and resorption is lost, bone mass becomes compromised, resulting in disorders such as osteoporosis and Paget's disease. Key molecules in the sphingosine-1-phosphate signalling pathway have been identified for their role in regulating bone remodelling, in addition to its more recognised role in inflammatory responses. This review discusses the accumulating evidence for the different, and, in certain circumstances, opposing, roles of S1P in bone homeostasis and disease, including osteoporosis, Paget's disease, and inflammatory bone loss. Specifically, we describe the current, often conflicting, evidence surrounding S1P function in osteoblasts, osteoclasts, and their precursors in health and disease, concluding that S1P may be an effective biomarker of bone disease and also an attractive therapeutic target for disease.
Collapse
Affiliation(s)
| | - Amy J. Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
6
|
Matsuzaki E, Minakami M, Matsumoto N, Anan H. Dental regenerative therapy targeting sphingosine-1-phosphate (S1P) signaling pathway in endodontics. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:127-134. [PMID: 33088365 PMCID: PMC7567953 DOI: 10.1016/j.jdsr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The establishment of regenerative therapy in endodontics targeting the dentin-pulp complex, cementum, periodontal ligament tissue, and alveolar bone will provide valuable information to preserve teeth. It is well known that the application of stem cells such as induced pluripotent stem cells, embryonic stem cells, and somatic stem cells is effective in regenerative medicine. There are many somatic stem cells in teeth and periodontal tissues including dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal ligament stem cells. Particularly, several studies have reported the regeneration of clinical pulp tissue and alveolar bone by DPSCs transplantation. However, further scientific issues for practical implementation remain to be addressed. Sphingosine-1-phosphate (S1P) acts as a bioactive signaling molecule that has multiple biological functions including cellular differentiation, and has been shown to be responsible for bone resorption and formation. Here we discuss a strategy for bone regeneration and a possibility for regenerative endodontics targeting S1P signaling pathway as one of approaches for induction of regeneration by improving the regenerative capacity of endogenous cells. SCIENTIFIC FIELD OF DENTAL SCIENCE Endodontology.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
7
|
Bone regenerative potential of the selective sphingosine 1-phosphate receptor modulator siponimod: In vitro characterisation using osteoblast and endothelial cells. Eur J Pharmacol 2020; 882:173262. [PMID: 32534075 DOI: 10.1016/j.ejphar.2020.173262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
The repair of critical bone defects remains a significant therapeutic challenge. While the implantation of drug-eluting scaffolds is an option, a drug with the optimal pharmacological properties has not yet been identified. Agents acting at sphingosine 1-phosphate (S1P) receptors have been considered, but those investigated so far do not discriminate between the five known S1P receptors. This work was undertaken to investigate the potential of the specific S1P1/5 modulator siponimod as a bone regenerative agent, by testing in vitro its effect on cell types critical to the bone regeneration process. hFOB osteoblasts and HUVEC endothelial cells were treated with siponimod and other S1P receptor modulators and investigated for changes in intracellular cyclic AMP content, viability, proliferation, differentiation, attachment and cellular motility. Siponimod showed no effect on the viability and proliferation of osteoblasts and endothelial cells, but increased osteoblast differentiation (as shown by increased alkaline phosphatase activity). Furthermore, siponimod significantly increased endothelial cell motility in scratch and transwell migration assays. These effects on osteoblast differentiation and endothelial cell migration suggest that siponimod may be a potential agent for the stimulation of localised differentiation of osteoblasts in critical bone defects.
Collapse
|
8
|
Fischer CL. Antimicrobial Activity of Host-Derived Lipids. Antibiotics (Basel) 2020; 9:E75. [PMID: 32054068 PMCID: PMC7168235 DOI: 10.3390/antibiotics9020075] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Host-derived lipids are increasingly recognized as antimicrobial molecules that function in innate immune activities along with antimicrobial peptides. Sphingoid bases and fatty acids found on the skin, in saliva and other body fluids, and on all mucosal surfaces, including oral mucosa, exhibit antimicrobial activity against a variety of Gram positive and Gram negative bacteria, viruses, and fungi, and reduce inflammation in animal models. Multiple studies demonstrate that the antimicrobial activity of lipids is both specific and selective. There are indications that the site of action of antimicrobial fatty acids is the bacterial membrane, while the long-chain bases may inhibit cell wall synthesis as well as interacting with bacterial membranes. Research in this area, although still sporadic, has slowly increased in the last few decades; however, we still have much to learn about antimicrobial lipid mechanisms of activity and their potential use in novel drugs or topical treatments. One important potential benefit for the use of innate antimicrobial lipids (AMLs) as antimicrobial agents is the decreased likelihood side effects with treatment. Multiple studies report that endogenous AML treatments do not induce damage to cells or tissues, often decrease inflammation, and are active against biofilms. The present review summarizes the history of antimicrobial lipids from the skin surface, including both fatty acids and sphingoid bases, in multiple human body systems and summarizes their relative activity against various microorganisms. The range of antibacterial activities of lipids present at the skin surface and in saliva is presented. Some observations relevant to mechanisms of actions are discussed, but are largely still unknown. Multiple recent studies examine the therapeutic and prophylactic uses of AMLs. Although these lipids have been repeatedly demonstrated to act as innate effector molecules, they are not yet widely accepted as such. These compiled data further support fatty acid and sphingoid base inclusion as innate effector molecules.
Collapse
Affiliation(s)
- Carol L Fischer
- Biology Department, Waldorf University, Forest City, IA 50436, USA
| |
Collapse
|
9
|
Beck S, Sehl C, Voortmann S, Verhasselt HL, Edwards MJ, Buer J, Hasenberg M, Gulbins E, Becker KA. Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro. J Mol Med (Berl) 2019; 98:209-219. [PMID: 31863153 PMCID: PMC7007894 DOI: 10.1007/s00109-019-01858-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
Abstract Periprosthetic infection (PPI) is a devastating complication in joint replacement surgery. On the background of an aging population, the number of joint replacements and associated complications is expected to increase. The capability for biofilm formation and the increasing resistance of different microbes to antibiotics have complicated the treatment of PPI, requiring the need for the development of alternative treatment options. The bactericidal effect of the naturally occurring amino alcohol sphingosine has already been reported. In our study, we demonstrate the antimicrobial efficacy of sphingosine on three different strains of biofilm producing Staphylococcus epidermidis, representing one of the most frequent microbes involved in PPI. In an in vitro analysis, sphingosine’s capability for prevention and treatment of biofilm-contamination on different common orthopedic implant surfaces was tested. Coating titanium implant samples with sphingosine not only prevented implant contamination but also revealed a significant reduction of biofilm formation on the implant surfaces by 99.942%. When testing the antimicrobial efficacy of sphingosine on sessile biofilm-grown Staphylococcus epidermidis, sphingosine solution was capable to eliminate 99.999% of the bacteria on the different implant surfaces, i.e., titanium, steel, and polymethylmethacrylate. This study provides evidence on the antimicrobial efficacy of sphingosine for both planktonic and sessile biofilm-grown Staphylococcus epidermidis on contaminated orthopedic implants. Sphingosine may provide an effective and cheap treatment option for prevention and reduction of infections in joint replacement surgery. Key messages • Here we established a novel technology for prevention of implant colonization by sphingosine-coating of orthopedic implant materials. • Sphingosine-coating of orthopedic implants prevented bacterial colonization and significantly reduced biofilm formation on implant surfaces by 99.942%. • Moreover, sphingosine solution was capable to eliminate 99.999% of sessile biofilm-grown Staphylococcus epidermidis on different orthopedic implant surfaces.
Collapse
Affiliation(s)
- Sascha Beck
- Department of Molecular Biology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Department of Orthopedics and Orthopedic Surgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.
| | - Carolin Sehl
- Department of Molecular Biology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Sylvia Voortmann
- Institute for Experimental Immunology and Imaging, Medical Research Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Jan Buer
- Institute of Medical Microbiology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, Medical Research Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, USA
| | - Katrin Anne Becker
- Department of Molecular Biology, Medical School Essen, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
10
|
Tantikanlayaporn D, Tourkova IL, Larrouture Q, Luo J, Piyachaturawat P, Witt MR, Blair HC, Robinson LJ. Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts. JBMR Plus 2018; 2:217-226. [PMID: 30123862 PMCID: PMC6095197 DOI: 10.1002/jbm4.10037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Production of sphingosine‐1‐phosphate (S1P) is linked to 17β‐estradiol (E2) activity in many estrogen‐responsive cells; in bone development, the role of S1P is unclear. We studied effects of S1P on proliferation and differentiation of human osteoblasts (hOB). Ten nM E2, 1 μM S1P, or 1 μM of the S1P receptor 1 (S1PR1) agonist SEW2871 increased hOB proliferation at 24 hours. S1PR 1, 2, and 3 mRNAs are expressed by hOB but not S1PR4 or S1PR5. Expression of S1PR2 was increased at 7 and 14 days of differentiation, in correspondence with osteoblast‐related mRNAs. Expression of S1PR1 was increased by E2 or S1P in proliferating hOB, whereas S1PR2 mRNA was unaffected in proliferating cells; S1PR3 was not affected by E2 or S1P. Inhibiting sphingosine kinase (SPHK) activity with sphingosine kinase inhibitor (Ski) greatly reduced the E2 proliferative effect. Both E2 and S1P increased SPHK mRNA at 24 hours in hOB. S1P promoted osteoblast proliferation via activating MAP kinase activity. Either E2 or S1P increased S1P synthesis in a fluorescent S1P assay. Interaction of E2 and S1P signaling was indicated by upregulation of E2 receptor mRNA after S1P treatment. E2 and S1P also promoted alkaline phosphatase expression. During osteoblast differentiation, S1P increased bone‐specific mRNAs, similarly to the effects of E2. However, E2 and S1P showed differences in the activation of some osteoblast pathways. Pathway analysis by gene expression arrays was consistent with regulation of pathways of osteoblast differentiation; collagen and cell adhesion proteins centered on Rho/Rac small GTPase signaling and Map kinase or signal transducer and activator of transcription (Stat) intermediates. Transcriptional activation also included significant increases in superoxide dismutase 1 and 2 transcription by either S1P or E2. We demonstrate that the SPHK system is a co‐mediator for osteoblast proliferation and differentiation, which is mainly, but not entirely, complementary to E2, whose effects are mediated by S1PR1 and S1PR2. © 2018 The Authors JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michelle R Witt
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
11
|
Wa Q, He P, Huang S, Zuo J, Li X, Zhu J, Hong S, Lv G, Cai D, Xu D, Zou X, Liu Y. miR-30b regulates chondrogenic differentiation of mouse embryo-derived stem cells by targeting SOX9. Exp Ther Med 2017; 14:6131-6137. [PMID: 29285169 DOI: 10.3892/etm.2017.5344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the mechanisms underlying microRNA (miRNA)-mediated regulation of chondrogenic differentiation. Mouse embryo-derived stem cells C3H10T1/2 were cultured and chondrogenic differentiation was induced using transforming growth factor-β3 (TGF-β3). In addition, miRNA expression profiles were detected via miRNA array analysis, and quantitative polymerase chain reaction was performed to verify the differentially expressed miRNAs. Furthermore, bioinformatics software was used to predict the putative targets and the prediction was validated by dual-luciferase reporter assays and western blot analysis. In addition, cell proliferation and glycosaminoglycans were measured by a direct cell count method and alcian blue staining, respectively. Compared with the control group, 86 miRNAs were identified as differentially expressed in TGF-β3-induced cells and the expression levels of 28 miRNAs were increased while the remaining 58 miRNAs exhibited a decline in expression. Amongst the differentially expressed miRNAs, miR-30b expression was observed to have significantly decreased during chondrogenic differentiation. SOX9 is a target gene of miR-30b, and miR-30b inhibits SOX9 expression during chondrogenic differentiation. Furthermore, the alcian blue staining results demonstrated that miR-30b inhibited early chondrogenic differentiation. However, the data of the present study indicated that miR-30b had no influence on C3H10T1/2 cell line proliferation. In conclusion, miR-30b is a key negative regulator of TGF-β3-induced C3H10T1/2 cell chondrogenic differentiation, which functions by directly targeting SOX9.
Collapse
Affiliation(s)
- Qingde Wa
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Peiheng He
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shuai Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianwei Zuo
- Department of Sports Medicine, Shenzhen Hospital of Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Xing Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinsong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Song Hong
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guoqing Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Dongfeng Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Dongliang Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuenong Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yi Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
12
|
Bougault C, El Jamal A, Briolay A, Mebarek S, Boutet MA, Garraud T, Le Goff B, Blanchard F, Magne D, Brizuela L. Involvement of sphingosine kinase/sphingosine 1-phosphate metabolic pathway in spondyloarthritis. Bone 2017; 103:150-158. [PMID: 28684192 DOI: 10.1016/j.bone.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a relatively common chronic inflammatory joint disorder, with a prevalence of about 0.2-0.5% worldwide. The primary target of the pathological process is the enthesis, where tendons and ligaments attach to underlying bone. These insertion sites are hotspots of bone formation (enthesophytes), which can lead to ankylosis. Unfortunately, the mechanisms causing the onset and progression of entheseal ossification remain largely unknown. Sphingosine 1-phosphate (S1P), a lipid generated after sphingosine phosphorylation by sphingosine kinases 1 and 2 (SK1/2), plays important roles in cell proliferation, differentiation and survival. S1P regulates fundamental biological processes such as cell cycle, inflammatory response or bone homeostasis. Indeed, S1P has been involved in some of most-spread skeletal diseases such as rheumatoid arthritis or osteoarthritis. On the other hand, the implication of S1P in SpA has not been explored yet. In the present work, we observed by ELISA that S1P content was significantly increased in the serum of SpA patients (6.1±4.2μM, n=21) compared to healthy donors (1.6±0.9μM, n=12). In vitro, gene expression of SK1 and SK2 as well as their activity were increased during differentiation of primary murine chondrocytes and osteoblasts into mineralizing cells. In addition, mRNA of the S1P-specific transporter Spns2 and S1P secretion were augmented. Using the pharmacological drugs SKi (SK pan-inhibitor), PF-543 (SK1 specific inhibitor) or K-145 (SK2 specific inhibitor), we showed that the inhibition of SK1 and/or SK2 decreased matrix mineralization, alkaline phosphatase activity and the mRNA expression of Runx2 and Bglap in chondrocytes and osteoblasts. To our knowledge, this is the first study indicating that S1P levels are significantly increased in serum from SpA patients. Moreover, we showed in vitro that SK activity was involved in the mineralization capacity of osteoblasts and chondrocytes. S1P metabolic pathway may represent an ingenious therapeutic target for SpA in the future.
Collapse
Affiliation(s)
- Carole Bougault
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Alaeddine El Jamal
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Anne Briolay
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | | | | | | | | | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
13
|
Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair. Pharmacol Res 2017; 125:232-245. [PMID: 28855094 DOI: 10.1016/j.phrs.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
The lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair. Indeed, S1P is implicated in many osteogenesis-related processes including stem cell recruitment and subsequent differentiation, differentiation and survival of osteoblasts, and coupling of the latter cell type with osteoclasts. In addition, S1P's role in promoting angiogenesis is well-established. The pleiotropic effects of S1P on bone and blood vessels have significant potential therapeutic implications, as current therapeutic approaches for critical bone defects show significant limitations. Because of the complex effects of S1P on bone, the pharmacology of S1P-like agents and their physico-chemical properties, it is likely that therapeutic delivery of S1P agents will offer significant advantages compared to larger molecular weight factors. Hence, it is important to explore novel methods of utilizing S1P agents therapeutically, and improve our understanding of how S1P and its receptors modulate bone physiology and repair.
Collapse
|
14
|
Watterson KR, Hansen SVF, Hudson BD, Alvarez-Curto E, Raihan SZ, Azevedo CMG, Martin G, Dunlop J, Yarwood SJ, Ulven T, Milligan G. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4. Mol Pharmacol 2017; 91:630-641. [PMID: 28385906 PMCID: PMC5438128 DOI: 10.1124/mol.116.107821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022] Open
Abstract
High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential of free fatty acid receptor 4 (FFA4) as a novel therapeutic target for the treatment of type II diabetes, the broad distribution pattern of this receptor suggests it may play a range of roles beyond glucose homeostasis in different cells and tissues. To date, a single molecule, 4-methyl-N-9H-xanthen-9-yl-benzenesulfonamide (AH-7614), has been described as an FFA4 antagonist; however, its mechanism of antagonism remains unknown. We synthesized AH-7614 and a chemical derivative and demonstrated these to be negative allosteric modulators (NAMs) of FFA4. Although these NAMs did inhibit FFA4 signaling induced by a range of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many anticancer drugs suggests that a novel close chemical analog of AH-7614 devoid of FFA4 activity, 4-methyl-N-(9H-xanthen-9-yl)benzamide (TUG-1387), will also provide a useful control compound for future studies assessing FFA4 function. Using TUG-1387 alongside AH-7614, we show that endogenous activation of FFA4 expressed by murine C3H10T1/2 mesenchymal stem cells is required for induced differentiation of these cells toward a more mature, adipocyte-like phenotype.
Collapse
Affiliation(s)
- Kenneth R Watterson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Steffen V F Hansen
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Sheikh Zahir Raihan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Carlos M G Azevedo
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Gabriel Martin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Julia Dunlop
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Stephen J Yarwood
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Trond Ulven
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (K.R.W., B.D.H., E.A.-C., S.Z.R., J.D., S.J.Y., G.M.); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark (S.V.F.H., C.M.G.A., G.M., T.U.); and Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom (S.J.Y.)
| |
Collapse
|