1
|
Li W, Zhou X, Qu M, Zheng Y, Shen B, Zeng B, Feng Y, Pang K, Wu J, Zeng B. WGCNA analysis reveals hub genes in the Hemarthria compressa roots in response to waterlogging stress. Sci Rep 2025; 15:13841. [PMID: 40263479 PMCID: PMC12015520 DOI: 10.1038/s41598-025-94873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Hemarthria compressa is a high-quality forage resource in China. In recent years, waterlogging has frequently occurred, adversely affecting the growth and development of H. compressa. In order to investigate the physiological and molecular response mechanisms of H. compressa under waterlogging stress and identify hub genes involved in waterlogging tolerance, H. compressa roots from the GY (waterlogging-tolerant) and N1291 (waterlogging-sensitive) cultivars were selected as experimental materials in this study. The physiological indexes of H. compressa were measured, and transcriptome sequencing was carried out after 8 h and 24 h of waterlogging stress, with 0 h used as the control group. Superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased in both GY and N1291 under waterlogging stress (P < 0.05). Weighted gene co-expression network analysis (WGCNA) identified a total of four modules significantly associated with waterlogging stress (r>|0.9|, P < 0.05). Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment results showed that differentially expressed genes (DEGs) were mainly enriched in the Starch and sucrose metabolism, Plant hormone signal transduction, Ribosome and Glutathione metabolism pathways. Seven hub genes were also retrieved, including Cluster-38255.67514 and Cluster-38255.80127, potentially associated with waterlogging tolerance. It is related to the Ribosome pathway and participates in the process of anti-waterlogging regulation. The results of this experiment provide new insights into the response mechanisms of H. compressa to waterlogging stress and a theoretical framework for the effective selection and breeding of waterlogging-tolerant cultivars.
Collapse
Affiliation(s)
- Wenwen Li
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Minghao Qu
- Institute of Grass-Fed Livestock, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Yanlong Feng
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Kaiyue Pang
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guizhou, China.
| | - Bing Zeng
- College of Animal Science and Technology, Southwest Un Iversity, Chongqing, China.
- Chongqing University Herbivore Engineering Research Center, Chongqing, China.
| |
Collapse
|
2
|
Fedoreyeva LI, Lazareva EM, Kononenko NV. Features of the Effect of Quercetin on Different Genotypes of Wheat under Hypoxia. Int J Mol Sci 2024; 25:4487. [PMID: 38674072 PMCID: PMC11050432 DOI: 10.3390/ijms25084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is one of the common abiotic stresses that negatively affects the development and productivity of agricultural crops. Quercetin is used to protect plants from oxidative stress when exposed to environmental stressors. O2 deficiency leads to impaired development and morphometric parameters in wheat varieties Orenburgskaya 22 (Triticum aestivum L.) and varieties Zolotaya (Triticum durum Desf.). Cytological analysis revealed various types of changes in the cytoplasm under conditions of hypoxia and treatment with quercetin. The most critical changes in the cytoplasm occur in the Zolotaya variety during pretreatment with quercetin followed by hypoxia, and in the Orenburgskaya 22 variety during hypoxia. Quercetin has a protective effect only on the Orenburgskaya 22 variety, and also promotes a more effective recovery after exposure to low O2 content. Hypoxia causes an increase in reactive oxygen species and activates the antioxidant system. It has been shown that the most active components of the antioxidant system in the Orenburgskaya 22 variety are MnSOD and Cu/ZnSOD, and in the Zolotaya variety GSH. We have shown that quercetin provides resistance only to the wheat genotype Orenburgskaya 22, as a protective agent against abiotic stress, which indicates the need for a comprehensive study of the effects of exogenous protectors before use in agriculture.
Collapse
Affiliation(s)
- Larisa Ivanovna Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| | - Elena Michailovna Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila Vasilievna Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.M.L.); (N.V.K.)
| |
Collapse
|
3
|
Wang F, Zhang S, Hu X, Lv X, Liu M, Ma Y, Manirakiza B. Floating plants reduced methane fluxes from wetlands by creating a habitat conducive to methane oxidation. J Environ Sci (China) 2024; 135:149-160. [PMID: 37778791 DOI: 10.1016/j.jes.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/03/2023]
Abstract
Wetlands are one of the important natural sources of atmospheric methane (CH4), as an important part of wetlands, floating plants can be expected to affect methane release. However, the effects of floating plants on methane release are limited. In this study, methane fluxes, physiochemical properties of the overlying water, methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes, Hydrocharis dubia, and Trapa natans. We found that E. crassipes, H. dubia, and T. natans plants could inhibit 84.31% - 97.31%, 4.98% - 88.91% and 43.62% - 92.51% of methane fluxes at interface of water-atmosphere compared to Control, respectively. Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots, stems, and leaves. At the same biomass, root of E. crassipes (36.44%) had the highest methane oxidation potential, followed by H. dubia (12.99%) and T. natans (11.23%). Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10% - 3.33%) were known methanotrophs. Type I methanotrophs accounted for 95.07% of total methanotrophs. The pmoA gene abundances ranged from 1.90 × 1016 to 2.30 × 1018 copies/g fresh weight of root biofilms. Abundances of pmoA gene was significantly positively correlated with environmental parameters. Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation. This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.
Collapse
Affiliation(s)
- Fuwei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; China Machinery International Engineering Desigh and Research Institute co., Ltd. East China Regional Center, Nanjing 210008, China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | |
Collapse
|
4
|
Abstract
Salt stress causes several damaging effects in plant cells. These commonly observed effects are the results of oxidative, osmotic, and toxic stresses. To ensure normal growth and development of tissues, the cellular compartments of multicellular plants have a unique system that provides the specified parameters of growth and differentiation. The cell shape and the direction of division support the steady development of the organism, the habit, and the typical shape of the organs and the whole plant. When dividing, daughter cells evenly or unevenly distribute the components of cytoplasm. Factors such as impaired osmotic regulation, exposure to toxic compounds, and imbalance in the antioxidant system cause disorders associated with the moving of organelles, distribution transformations of the endoplasmic reticulum, and the vacuolar compartment. In some cases, one can observe a different degree of plasmolysis manifestation, local changes in the density of cytoplasm. Together, these processes can cause disturbances in the direction of cell division, the formation of a phragmoplast, the formation of nuclei of daughter cells, and a violation of their fine structural organization. These processes are often accompanied by significant damage to the cytoskeleton, the formation of nonspecific structures formed by proteins of the cytoskeleton. The consequences of these processes can lead to the death of some cells or to a significant change in their morphology and properties, deformation of newly formed tissues and organs, and changes in the plant phenotype. Thus, as a result of significant violations of the cytoskeleton, causing critical destabilization of the symmetric distribution of the cell content, disturbances in the distribution of chromosomes, especially in polyploid cells, may occur, resulting in the appearance of micronuclei. Hence, the asymmetry of a certain component of the plant cell is a marker of susceptibility to abiotic damage.
Collapse
|
5
|
Kacprzyk J, Burke R, Schwarze J, McCabe PF. Plant programmed cell death meets auxin signalling. FEBS J 2021; 289:1731-1745. [PMID: 34543510 DOI: 10.1111/febs.16210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Rory Burke
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Johanna Schwarze
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Involvement of cytoskeleton microtubules in the formation of induced aerenchyma in adventitious roots of Zea mays (Poaceae). UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.03.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Martínez-Girón R, Pantanowitz L, Martínez-Torre C. Plant material (aeriferous parenchyma and sclereid cells) mimicking mucormycosis in sputum cytology. Diagn Cytopathol 2020; 48:1309-1312. [PMID: 32445261 DOI: 10.1002/dc.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Rafael Martínez-Girón
- INCLÍNICA Foundation for Clinical, Pneumological and Carcinogenic Research, Oviedo, Spain
| | - Liron Pantanowitz
- Department of Pathology, UPMC Shadyside, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
8
|
Blume YB. A journey through a plant cytoskeleton: Hot spots in signaling and functioning. Cell Biol Int 2019; 44:1262-1266. [PMID: 31486567 DOI: 10.1002/cbin.11224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
This survey paper contains a brief analysis of publications included in the special issue of the scientific journal Cell Biology International titled "Plant Cytoskeleton Structure, Dynamics and Functions". The manuscripts in this special issue reflect some new aspects of plant cytoskeleton organization, signaling and functioning, and results from different Ukrainian research groups, and focuses on bringing together scientists working across different instrumental scales.
Collapse
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
9
|
Blume YB. A JOURNEY THROUGH PLANT CYTOSKELETON: HOT SPOTS IN SIGNALING AND FUNCTIONING. Cell Biol Int 2019; 43:978-982. [PMID: 31415134 DOI: 10.1002/cbin.11210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|