1
|
Janacova L, Stenckova M, Lapcik P, Hrachovinova S, Bouchalova P, Potesil D, Hrstka R, Müller P, Bouchal P. Catechol-O-methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer. Sci Rep 2023; 13:1285. [PMID: 36690660 PMCID: PMC9870911 DOI: 10.1038/s41598-023-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michaela Stenckova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Sarka Hrachovinova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Proteomics Core Facility, Central European Institute for Technology, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Müller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
2
|
Szabo R, Callies LK, Bugge TH. Matriptase drives early-onset intestinal failure in a mouse model of congenital tufting enteropathy. Development 2019; 146:dev183392. [PMID: 31628112 PMCID: PMC6899019 DOI: 10.1242/dev.183392] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Syndromic congenital tufting enteropathy (CTE) is a life-threatening recessive human genetic disorder that is caused by mutations in SPINT2, encoding the protease inhibitor HAI-2, and is characterized by severe intestinal dysfunction. We recently reported the generation of a Spint2-deficient mouse model of CTE. Here, we show that the CTE-associated early-onset intestinal failure and lethality of Spint2-deficient mice is caused by unchecked activity of the serine protease matriptase. Macroscopic and histological defects observed in the absence of HAI-2, including villous atrophy, luminal bleeding, loss of mucin-producing goblet cells, loss of defined crypt architecture and the resulting acute inflammatory response in the large intestine, were all prevented by intestinal-specific inactivation of the St14 gene encoding matriptase. The CTE-associated loss of the cell junctional proteins EpCAM and claudin 7 was also prevented. As a result, inactivation of intestinal matriptase allowed Spint2-deficient mice to gain weight after birth and dramatically increased their lifespan. These data implicate matriptase as a causative agent in the development of CTE and may provide a new target for the treatment of CTE in individuals carrying SPINT2 mutations.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - LuLu K Callies
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Bone Metastasis Phenotype and Growth Undergo Regulation by Micro-Environment Stimuli: Efficacy of Early Therapy with HGF or TGFβ1-Type I Receptor Blockade. Int J Mol Sci 2019; 20:ijms20102520. [PMID: 31121879 PMCID: PMC6567054 DOI: 10.3390/ijms20102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) and transforming growth factor β1 (TGFβ1) are biological stimuli of the micro-environment which affect bone metastasis phenotype through transcription factors, but their influence on the growth is scarcely known. In a xenograft model prepared with 1833 bone metastatic cells, derived from breast carcinoma cells, we evaluated mice survival and Twist and Snail expression and localization after competitive inhibition of HGF with NK4, or after blockade of TGFβ1-type I receptor (RI) with SB431542: in the latter condition HGF was also measured. To explain the in vivo data, in 1833 cells treated with SB431542 plus TGFβ1 we measured HGF formation and the transduction pathway involved. Altogether, HGF seemed relevant for bone-metastatic growth, being hampered by NK4 treatment, which decreased Twist more than Snail in the metastasis bulk. TGFβ1-RI blockade enhanced HGF in metastasis and adjacent bone marrow, while reducing prevalently Snail expression at the front and bulk of bone metastasis. The HGF accumulation in 1833 cells depended on an auxiliary signaling pathway, triggered by TGFβ1 under SB431542, which interfered in the transcription of HGF activator inhibitor type 1 (HAI-1) downstream of TGFβ-activated kinase 1 (TAK1): HGF stimulated Twist transactivation. In conclusion, the impairment of initial outgrowth with NK4 seemed therapeutically promising more than SB431542 chemotherapy; a functional correlation between Twist and Snail in bone metastasis seemed to be influenced by the biological stimuli of the micro-environment, and the targeting of these phenotype biomarkers might inhibit metastasis plasticity and colonization, even if it would be necessary to consider the changes of HGF levels in bone metastases undergoing TGFβ1-RI blockade.
Collapse
|
4
|
Carvalho HF, Taboga SR, Felisbino SL, Biancardi MF. Prostate epithelium basement membrane and prostate cell biology: 20 years. Cell Biol Int 2017; 41:1170-1173. [PMID: 28755475 DOI: 10.1002/cbin.10831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sebastião Roberto Taboga
- IBILCE, Universidade Estadual Júlio de Mesquita Filho (UNESP), São José do Rio Preto, SP, Brazil
| | - Sérgio Luis Felisbino
- Department of Morphology, Institute of Biosciences, Universidade Estadual Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology, and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| |
Collapse
|