1
|
Guo R, Shi L, Chen Y, Lin C, Yin W. Exploring the roles of ncRNAs in prostate cancer via the PI3K/AKT/mTOR signaling pathway. Front Immunol 2025; 16:1525741. [PMID: 40170845 PMCID: PMC11959002 DOI: 10.3389/fimmu.2025.1525741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Although various treatment options are available for prostate cancer (PCa), including androgen deprivation therapy (ADT) and chemotherapy, these approaches have not achieved the desired results clinically, especially in the treatment of advanced chemotherapy-resistant PCa. The PI3K/AKT/mTOR (PAM) signaling pathway is a classical pathway that is aberrantly activated in cancer cells and promotes the tumorigenesis, metastasis, resistance to castration therapy, chemoresistance, and recurrence of PCa. Noncoding RNAs (ncRNAs) are a class of RNAs that do not encode proteins. However, some ncRNAs have recently been shown to be differentially expressed in tumor tissues compared with noncancerous tissues and play important roles at the transcription and posttranscription levels. Among the types of ncRNAs, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), and Piwi-interacting RNAs (piRNAs) can participate in the PAM pathway to regulate PCa growth, metastasis, angiogenesis, and tumor stemness. Therefore, ncRNA therapy that targets the PAM signaling pathway is expected to be a novel and effective approach for treating PCa. In this paper, we summarize the types of ncRNAs that are associated with the PAM pathway in PCa cells as well as the functions and clinical roles of these ncRNAs in PCa. We hope to provide novel and effective strategies for the clinical diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Rongwang Guo
- Nanchang University, 999 University Avenue, Honggutan District, Nanchang, China
| | - Liji Shi
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Yonghui Chen
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Canling Lin
- School of Chemical and Biological Engineering, Yichun College, Yichun, China
| | - Weihua Yin
- Department of Oncology, Baoan Central Hospital of Shenzhen, Bao’ an District, Shenzhen, China
| |
Collapse
|
2
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03736-x. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Doghish AS, Mageed SSA, Zaki MB, Abd-Elmawla MA, Sayed GA, Hatawsh A, Aborehab NM, Moussa R, Mohammed OA, Abdel-Reheim MA, Elimam H. Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways. Funct Integr Genomics 2025; 25:16. [PMID: 39821470 DOI: 10.1007/s10142-025-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, CairoE, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
4
|
Alkharsan AMHMS, Safaralizadeh R, Khalaj-Kondori M, HosseinpourFeizi M. Examination of the effects of capecitabine treatment on the HT-29 colorectal cancer cell line and HCG 11, HCG 15, and HCG 18 lncRNAs in CRC patients before and after chemotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03674-8. [PMID: 39702604 DOI: 10.1007/s00210-024-03674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Long noncoding RNAs (lncRNAs) are involved in several pathogenic pathways related to CRC. This study aimed to compare the expression profiles of HCG11, HCG15, and HCG18 genes in CRC patients before and after chemotherapy. Moreover, capecitabine's effects, which is a chemotherapeutic agent, were investigated on apoptosis, cell cycle, and the lncRNA expression in CRC using HT-29 cells. qRT-PCR was used to measure lncRNAs expression in patient and healthy tissues, and the HT-29 CRC cell line. Additionally, the diagnostic and prognostic utility of these lncRNAs were assessed using the ROC curve analysis. The MTT assay was used to evaluate the cytotoxicity of capecitabine, and by using flow cytometry, apoptosis induction and cell cycle progression were investigated. CRC patients expressed higher levels of HCG11 and HCG15 and lower levels of HCG18. Furthermore, those receiving capecitabine demonstrated a decrease in HCG11 and an increase in HCG18 expression. In the HT-29 cell line, capecitabine can also increase the expression of HCG18 and decrease the expression of HCG11 and HCG15. However, no statistically significant variations were determined in the expression of these lncRNAs in clinical variables. Additionally, the data show that HCG18 is a poor prognostic biomarker, and HCG11 and HCG18 are poor diagnostic biomarkers. Treatment with capecitabine caused an accumulation of sub-G1 cells, indicating a potent apoptotic effect on HT-29 cells. These findings confirmed capecitabine's anticancer effects and showed that it can increase HCG18 and reduce HCG11 and HCG15 expression.
Collapse
Affiliation(s)
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
5
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
6
|
Zhou L, Luo L, Luo L, Ding Y, Lu Z, Feng D, Xiao Y. Macrophage-Secreted Exosomal HCG11 Promotes Autophagy in Antigen 85B-Infected Macrophages and Inhibits Fibroblast Fibrosis to Affect Tracheobronchial Tuberculosis Progression via the miR-601/Sirtuin 1 Axis. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Tracheobronchial tuberculosis (TBTB) is a serious threat to human health. We aimed to explore the potential regulatory mechanism by which macrophages secrete exosomes that regulate TBTB progression. Methods: Bioinformatics analysis predicted lncRNAs with low
expression in TBTB. Macrophage-derived exosomes were isolated and identified. HCG11 was knocked down and overexpressed, and miR-601 was overexpressed. ELISA was utilized to measure TGF-β, IL-8, IL-6 and IFN-γ levels. Based on bioinformatics prediction and dual-luciferase
assay analysis, lncRNA HCG11 bound to miR-601, and miR-601 bound to SIRT1. The mRNA or protein expressions of lncRNA HCG11, miR- 601, SIRT1, PI3K/Akt/mTOR pathway-related factors, ATG5 and LC3B, as well as COL-1, MMP2, Timp-1 and Timp-3, were evaluated. Results: HCG11 was expressed
at low levels in TBTB patients. Macrophage-secreted exosomes inhibited Ag85B-induced macrophage proinflammatory response and promoted autophagy. Moreover, normal macrophage (MØ)-exo-derived HCG11 could inhibit Ag85B-induced macrophage proinflammatory response and promote autophagy.
HCG11 bound to miR-601, and miR-601 bound to SIRT1. HCG11 inhibited miR-601 to upregulate SIRT1. In addition, MØ-exo-derived HCG11 reduced Ag85B-induced fibroblast hyperproliferation and extracellular matrix deposition through the miR-601/SIRT1 axis. Conclusion: Macrophage-secreted
exosomal HCG11 promotes autophagy in Ag85B-infected macrophages and inhibits fibroblast fibrosis to affect TBTB progression via the miR-601/SIRT1 axis.
Collapse
Affiliation(s)
- Lei Zhou
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Li Luo
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Linzi Luo
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Yan Ding
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Zhibin Lu
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Dan Feng
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| | - Yangbao Xiao
- Endoscopy Center, Hunan Chest Hospital, Changsha, 410016, China
| |
Collapse
|
7
|
Wang J, Huang J, Guo Y, Fu Y, Cao Y, Zhou K, Ma J, Lv B, Huang W. Identification and functional analysis of LncRNA-XIST ceRNA network in prostate cancer. BMC Cancer 2022; 22:935. [PMID: 36038831 PMCID: PMC9426231 DOI: 10.1186/s12885-022-10007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a functional role in the progression of prostate cancer (PCa). However, the molecular mechanism, expression, or function of the lncRNA XIST in PCa is not well understood. Therefore, the major goal of this study was to investigate the involvement of XIST in PCa. METHODS We used the The Cancer Genome Atlas (TCGA) database to conduct a pan-cancer bioinformatics analysis of XIST and identified that it may play an important role in prostate cancer. This finding was verified using clinical samples and in vitro assays. Finally, we constructed an XIST ceRNA network for prostate cancer. RESULTS Our in vitro and in vivo results showed that the XIST gene expression level was higher in PCa derived cells and tissues compared to that in normal cells and tissues. XIST gene expression level was positively correlated with the invasion and proliferation of tumour cells. Furthermore, the downregulation of XIST inhibited the growth of subcutaneous 22Rv1 xenografts in nude mice. In addition, we constructed a XIST ceRNA network. Consistent with previous studies, we found that the role of XIST is mediated through via sponges, such as miRNA -96-5p, miRNA -153-3p, and miRNA-182-5p. CONCLUSION High expression level of XIST can lead to enhanced carcinogenicity in PCa. Therefore, XIST has the potential to be used as a prognostic marker and may become a new research focus for the treatment of PCa.
Collapse
Affiliation(s)
- Jie Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingxue Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuli Fu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifang Cao
- Urology Department, Jiaxing First Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Kang Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianxiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bodong Lv
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Zhejia-Ng University, Hangzhou, China.
| | - Wenjie Huang
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Zhejia-Ng University, Hangzhou, China.
| |
Collapse
|
8
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
9
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Zhong B, Zhao Z, Jiang X. RP1-59D14.5 triggers autophagy and represses tumorigenesis and progression of prostate cancer via activation of the Hippo signaling pathway. Cell Death Dis 2022; 13:458. [PMID: 35562348 PMCID: PMC9106715 DOI: 10.1038/s41419-022-04865-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the major malignant tumors among men worldwide. Long noncoding RNAs (lncRNAs) have been documented as important modulators in human cancers, including PCa. In our study, we investigated the role and potential mechanism of RP1-59D14.5 in PCa. RP1-59D14.5 expressed at a low level in PCa cells. Gain-of-function assays including colony formation and transwell assays displayed that RP1-59D14.5 overexpression repressed PCa cell proliferation, migration, and invasion. Besides, RP1-59D14.5 up-regulation induced autophagy in PCa cells. Mechanically, luciferase reporter assays and western blot verified that RP1-59D14.5 activated the Hippo pathway in PCa cells. Through RNA-binding protein immunoprecipitation (RIP) and RNA pull-down assays, we validated that RP1-59D14.5 functioned as a competing endogenous RNA (ceRNA) to regulate large tumor suppressor kinase 1/2 (LATS1/2) via targeting miR-147a. Moreover, RP1-59D14.5 recruited HUR to promote casein kinase 1 (CK1) expression. Collectively, RP1-59D14.5 promoted yes-associated protein (YAP) degradation to activate the Hippo pathway in PCa progression via targeting the miR-147a/LATS1/2 axis and recruiting HUR to promote the interaction of CK1 and β-transducin repeat-containing protein (βTrCP). These results implied that RP1-59D14.5 acted as a tumor suppressor in PCa, which might be a target for PCa treatment.
Collapse
Affiliation(s)
- Bing Zhong
- grid.89957.3a0000 0000 9255 8984Department of Urology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| | - Zexue Zhao
- grid.89957.3a0000 0000 9255 8984Department of Orthopedics, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| | - Xi Jiang
- grid.89957.3a0000 0000 9255 8984Department of Urology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu China
| |
Collapse
|
11
|
Du J, Gong A, Zhao X, Wang G. Pseudouridylate Synthase 7 Promotes Cell Proliferation and Invasion in Colon Cancer Through Activating PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2022; 67:1260-1270. [PMID: 33811565 DOI: 10.1007/s10620-021-06936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/18/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Colorectal cancer is commonly malignant tumor. Herein, we demonstrate that pseudouridylate synthase 7 (PUS7) is closely related to colon cancer. But the biological role of PUS7 in colon cancer is not known. AIMS The present study aims to investigate the effects of PUS7 in colon cancer clinical samples and cells and the related molecular mechanism. METHODS A profile data set was downloaded from the Cancer Genome Atlas database, which included data from colon cancer tissue samples and normal tissue samples. The top 200 differentially expressed genes were subsequently investigated by a protein-protein interaction (PPI) network. RT-PCR and western blot assays were used to determine gene expression levels. CCK8 assay, colony formation experiment, transwell and flow cytometry assay were used to determine cell viability, proliferation, invasion, and apoptosis, respectively. RESULTS PUS7 is a key gene from the most significant module of the PPI network. PUS7 was upregulated in colon cancer tissues and cell lines. Moreover, PUS7 overexpression is significantly related to the poor survival rate for 60 colon cancer's patients. Cell proliferation and invasion was significantly reduced by PUS7 inhibition and promoted by PUS7 overexpression. The protein levels of cleaved caspase-3/9, c-myc, E-cadherin and vimentin genes were significantly regulated in colon cancer cells transfected with PUS7 interference or overexpression. PUS7 overexpression significantly upregulated the phosphorylation levels of PI3K, AKT and mTOR. CONCLUSION The results of this study demonstrate that PUS7 overexpression upregulates cell proliferation, invasion and inhibits cell apoptosis of colon cancer cells via activating PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiming Du
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| | - Aimin Gong
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China.
| | - Xuefeng Zhao
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| | - Guixin Wang
- Department of Anus and Intestine Surgery, Xinhua Hospital Affiliated to Dalian University, 156 Wansui Street Shahekou District, Dalian City, 116000, Liaoning Province, China
| |
Collapse
|
12
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
13
|
Yan H, Zhou Y, Chen Z, Yan X, Zhu L. Long non-coding RNA HCG11 enhances osteosarcoma phenotypes by sponging miR-1245b-5p that directly inhibits plakophilin 2. Bioengineered 2021; 13:140-154. [PMID: 34949159 PMCID: PMC8805843 DOI: 10.1080/21655979.2021.2010367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (lncRNA) HCG11 can regulate various cancers through the ceRNA network. However, its role in osteosarcoma (OS) remains unknown. The HOS and Saos-2 cell lines were used for in vitro analyses. HCG11 and plakophilin 2 (PKP2) silencers, a miR-1245b-5p mimic, and a miR-1245b-5p inhibitor were utilized for the regulation analysis of lncRNA HCG11, miR-1245b-5p, and PKP2. Cell Counting Kit-8, wound healing, and transwell assays were used for cell proliferation, migration, and invasion analyses, and caspase-3 activity assay was used to measure cell apoptosis. The expression levels of lncRNA HCG11, miR-1245b-5p, and PKP2 were evaluated by quantitative real-time PCR and Western blotting. The distribution of lncRNA HCG11 was assessed using the RNA-FISH assay. The sponging and targeting roles of HCG11 and PKP2 on miR-1245b-5p were confirmed by dual-luciferase reporter analysis. An RNA immunoprecipitation assay was used to assess the binding between lncRNA HCG11 and miRNA-1245b-5p. We found that the lncRNA HCG11 was significantly upregulated in OS. LncRNA HCG11 silencing inhibits OS progression by repressing cell proliferation, migration, and invasion, and promoting cell apoptosis. RNA-FISH analysis indicated that lncRNA HCG11 was located in the cytoplasm. Mechanistic experiments showed that lncRNA HCG11 sponges miR-1245b-5p and negatively regulates miR-1245b-5p expression. Upregulated lncRNA HCG11 promotes proliferation, migration, and invasion, and inhibits apoptosis by inhibiting miR-1245b-5p in OS cells. PKP2 was verified as a target gene of miR-1245b-5p. Upregulated PKP2 promotes proliferation, migration, and invasion, and inhibits apoptosis by inhibiting miR-1245b-5p in OS. In conclusion, the HCG11/miR-1245b-5p/PKP2 axis promotes OS expression by promoting cell proliferation, migration, and invasion, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hao Yan
- Department of Spinal Surgery, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Yong Zhou
- Department of Oncology, Hubei Provincial Hospital of TCM, Wuhan, Hubei, China
| | - Zhujiang Chen
- Department of Spinal Surgery, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Xiaokang Yan
- Department of Orthopaedics, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Ling Zhu
- Department of Spinal Surgery, Hubei 672 Orthopaedics Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| |
Collapse
|
14
|
Dong Y, Lin X, Kapoor A, Gu Y, Xu H, Major P, Tang D. Insights of RKIP-Derived Suppression of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13246388. [PMID: 34945007 PMCID: PMC8699807 DOI: 10.3390/cancers13246388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite an intensive research effort in the past few decades, prostate cancer (PC) remains a top cause of cancer death in men, particularly in the developed world. The major cause of fatality is the progression of local prostate cancer to metastasis disease. Treatment of patients with metastatic prostate cancer (mPC) is generally ineffective. Based on the discovery of mPC relying on androgen for growth, many patients with mPC show an initial response to the standard of care: androgen deprivation therapy (ADT). However, lethal castration resistant prostate cancers (CRPCs) commonly develop. It is widely accepted that intervention of metastatic progression of PC is a critical point of intervention to reduce PC death. Accumulative evidence reveals a role of RKIP in suppression of PC progression towards mPC. We will review current evidence and discuss the potential utilization of RKIP in preventing mPC progression. Abstract Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms underpinning metastatic progression represents the overarching challenge in PC research. This progression is regulated by complex mechanisms, including those regulating PC cell proliferation, epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein (RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC. In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze RKIP’s tumor suppression actions in PC.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35168)
| |
Collapse
|
15
|
Mao J, Qiu H, Guo L. LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun 2021; 580:74-80. [PMID: 34624573 DOI: 10.1016/j.bbrc.2021.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy the pathogenesis of which is terribly complicated and remains largely unclear. Long non-coding RNAs (lncRNAs) are a group of endogenous RNA molecules that are involved in various malignant processes. In this study, we explored the roles of lncRNA Human leukocyte antigen complex group 11 (HCG11) in LUAD. Our data revealed that lncRNA HCG11 expression was downregulated in LUAD, which was modulated by the hypermethylation of HCG11 promoter and Methyltransferase Like 14 (METTL14) mediated N6-methyladenosine (m6A) modification. The m6A modification of HCG11 promoted its nuclear exportation and binding by Insulin Like Growth Factor 2 MRNA Binding Protein 2 (IGF2BP2), resulting in increased stability. HCG11 could recruit IGF2BP2 to target Large Tumor Suppressor Kinase 1 (LATS1) mRNA to enhance the stability and promote the expression of LATS1. HCG11 served as a tumor suppressor to restrain tumor growth in LUAD by regulating LATS1. In summary, this study demonstrated that HCG11 mediated by METTL14 inhibited the growth of lung adenocarcinoma via IGF2BP2/LATS1.
Collapse
Affiliation(s)
- Jun Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Gansu Medical College, Pingliang, 744000, Gansu, China
| | - Hailong Qiu
- Department of General Medicine, Affiliated Hospital of Gansu Medical College, Pingliang, 744000, Gansu, China
| | - Liling Guo
- Department of General Medicine, Affiliated Hospital of Gansu Medical College, Pingliang, 744000, Gansu, China.
| |
Collapse
|
16
|
Yuan X, Zhao Q, Zhang Y, Xue M. The role and mechanism of HLA complex group 11 in cancer. Biomed Pharmacother 2021; 143:112210. [PMID: 34563948 DOI: 10.1016/j.biopha.2021.112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
HLA is critical in a variety of diseases, including infectious disease and cancer, and has been used for diagnostic differentiation and immunosurveillance of certain diseases. In addition, emerging evidence suggests that the mutations and dysregulation of lncRNAs are essential contributors in cancers. HLA Complex Group 11 (HCG11) located on MHC region is affiliated with the lncRNA class. Studies have shown that HCG11 could serve as a key regulator in lung cancer, prostate cancer, glioma, cervical cancer and hepatocellular carcinoma. In this review, we summarize the accumulated information on the expression and clinical value of HCG11 in different cancer types, discuss its interactions with microRNAs, mRNAs, and proteins, and discover the biological roles and potential mechanisms of HCG11 in a variety of cellular functions, including cell proliferation, apoptosis, migration, and invasion. Further, we emphasize the possible application of HCG11 in treatment, summarize the studies of HCG11 in chemotherapy resistance and hormone therapy, and propose the significance of further study of HCG11.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qinlu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
17
|
Cui Z, Wang Q, Deng MH, Han QL. LncRNA HCG11 promotes 5-FU resistance of colon cancer cells through reprogramming glucose metabolism by targeting the miR-144-3p-PDK4 axis. Cancer Biomark 2021; 34:41-53. [PMID: 34542064 DOI: 10.3233/cbm-210212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Colorectal cancer (CRC), one of the most common human malignancies, is a leading cause of the cancer-related mortality. 5-FU is a first-line chemotherapeutic agent against CRC. Although CRC patients responded to 5-FU therapy initially, a part of patients succumbed to CRC due to the acquired drug resistance. Thus, investigating molecular mechanisms underlying chemoresistance will contribute to developing novel strategies against colorectal cancer. OBJECTIVE Accumulation evidence revealed pivotal roles of long non-coding RNAs (lncRNAs) in tumorigenesis and chemoresistance of CRC. However, the precise roles and molecular mechanisms of lncRNA-HCG11 in CRC remain unclear. This study aimed to investigate the biological roles and underlying mechanisms of HCG11 as well as its molecular targets in regulating the cellular metabolism processes, which facilitate the chemoresistance of CRC. METHODS AND RESULTS This study uncovers that HCG11 was significantly upregulated in CRC tumors tissues and cell lines. Moreover, HCG11 was elevated in 5-FU resistant CRC tumors. Silencing HCG11 inhibited colon cancer cell proliferation, migration, invasion and glucose metabolism and sensitized CRC cells to 5-FU. In addition, we detected increased HCG11 expression level and glucose metabolism in the established 5-FU resistant CRC cell line (DLD-1 5-FU Res). Furthermore, microRNA-microArray, RNA pull-down and luciferase assays demonstrated that HCG11 inhibited miR-144-3p which displays suppressive roles in colon cancer via sponging it to form a ceRNA network. We identified pyruvate dehydrogenase kinase 4 (PDK4), which is a glucose metabolism key enzyme, was directly targeted by miR-144-3p in CRC cells. Rescue studies validated that the miR-144-3p-inhibited glucose metabolism and 5-FU sensitization were through targeting PDK4. Finally, restoration of miR-144-3p in HCG11-overexpressing DLD-1 5-FU resistant cells successfully overcame the HCG11-faciliated 5-FU resistance via targeting PDK4. CONCLUSION In summary, this study reveals critical roles and molecular mechanisms of the HCG11-mediated 5-FU resistance through modulating the miR-144-3p-PDK4-glucose metabolism pathway in CRC.
Collapse
|
18
|
Gu J, Dai B, Shi X, He Z, Xu Y, Meng X, Zhu J. lncRNA HCG11 suppresses human osteosarcoma growth through upregulating p27 Kip1. Aging (Albany NY) 2021; 13:21743-21757. [PMID: 34518440 PMCID: PMC8457558 DOI: 10.18632/aging.203517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a common malignant bone cancer threatening children and young adults. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in the progression of OS. Herein, we want to clarify the roles of lncRNA human leukocyte antigen complex group 11 (HCG11) in OS. Our data revealed that HCG11 expression is decreased in OS, which is a result of transcriptional repression of YY1. Low HCG11 level is closely associated with larger tumor size and shorter overall survival of OS patients. HCG11 negatively regulates cell proliferation, cell cycle, DNA replication in vitro and tumor growth in vivo. HCG11 can raise p27 Kip1 expression via binding to miR-942-5p and IGF2BP2, and p27 Kip1 acts as a key effector for HCG11 exerting biological functions. In conclusion, HCG11 is downregulated in OS, and restrains OS growth both in vitro and in vivo by raising p27 Kip1 expression via binding to miR-942-5p and IGF2BP2.
Collapse
Affiliation(s)
- Jie Gu
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Bo Dai
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Xuchao Shi
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Zhennian He
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Yuanlin Xu
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Xiangqian Meng
- Department of Stomatology, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Junlan Zhu
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Su Z, Chen M, Ding R, Shui L, Zhao Q, Luo W. Long non‑coding RNA HCG11 suppresses the malignant phenotype of non‑small cell lung cancer cells by targeting a miR‑875/SATB2 axis. Mol Med Rep 2021; 24:552. [PMID: 34080031 PMCID: PMC8188752 DOI: 10.3892/mmr.2021.12191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are involved in the development and progression of a variety of diseases. However, the role of the lncRNA HLA complex group 11 (HCG11) in non‑small cell lung cancer (NSCLC) remains unclear. The present study showed that the expression levels of HCG11 were reduced in tumor tissues compared with adjacent normal tissues, and similar results were obtained in experiments using lung cancer cell lines. Additionally, patients with high HCG11 expression had an increased survival rate compared with patients with low HCG11 expression. Further studies have shown that overexpression of HCG11 inhibited NSCLC cell proliferation in vitro and in vivo. Interestingly, it was observed that HCG11 expression was negatively associated with the expression levels of oncogenic microRNA‑875 (miR‑875) in patient specimens. Specifically, HCG11 served as a sponge of miR‑875. Notably, it was determined that special AT‑rich sequence‑binding protein 2 (SATB2) was a direct target gene of miR‑875, and overexpression of miR‑875 largely abrogated the effects of HCG11 in NSCLC cells. In conclusion, HCG11 was shown to suppress the malignant properties of NSCLC cells by targeting a miR‑875/SATB2 axis, and may therefore be a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhou Su
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Mi Chen
- Department of Oncology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| | - Ruilin Ding
- Institute of Drug Clinical Trial/GCP Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lian Shui
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Qingmei Zhao
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Wenjuan Luo
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
20
|
Xie J, Zhu J, Pang J, Ma Y. HLA complex group 11 is involved in colorectal carcinoma cisplatin resistance via the miR-214-5p/SOX4 axis. Oncol Lett 2021; 22:535. [PMID: 34079592 PMCID: PMC8157335 DOI: 10.3892/ol.2021.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the roles and potential mechanisms of long non-coding RNA HLA complex group 11 (HCG11) in colorectal carcinoma. Reverse transcription-quantitative PCR was used to detect HCG11 expression in clinical tissues and survival analysis was performed to identify its prognostic value. In order to investigate its specific biological functions in colorectal carcinoma, the transfection technique was used for the knockdown and overexpression of HCG11. Dual-luciferase reporter gene and RNA pull-down assays were used to identify the binding association between HCG11 and microRNA (miR)-214-5p. Western blot analysis was used to detect the mechanism of epithelial-mesenchymal transition (EMT) regulation in tumor cells in the pathway downstream of HCG11. HCG11 level was high in colorectal carcinoma tissues, which was associated with poor patient prognosis; however, chemotherapy may prevent the upregulation of HCG11 in colorectal carcinoma. HCG11-knockdown suppressed the proliferation, migration and chemotherapeutic sensitivity of colorectal carcinoma cells, whereas HCG11-overexpression enhanced chemotherapeutic sensitivity. miR-214-5p was revealed to be a target gene, and upon direct interaction, a negative regulator of HCG11 in colorectal carcinoma cells. Inhibition of miR-214-5p reversed the restriction of HCG11 on the malignant activity of colorectal carcinoma cells, while miR-214-5p mediated the chemotherapy-related intracellular EMT pathway. In conclusion, HCG11 is a vital oncogene of colorectal carcinoma involved in mediating the chemotherapeutic resistance of tumors.
Collapse
Affiliation(s)
- Jianping Xie
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, The First People's Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Jiaping Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| | - Jie Pang
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| | - Yaping Ma
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
21
|
Long Noncoding RNA HCG11 Acts as a Tumor Suppressor in Gastric Cancer by Regulating miR-942-5p/BRMS1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:9961189. [PMID: 34054958 PMCID: PMC8131154 DOI: 10.1155/2021/9961189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
The functions of long noncoding RNAs (lncRNAs) have been widely investigated in human cancers, including gastric cancer (GC). The purpose of this study was to elucidate the role of lncRNA HCG11 in GC. In this study, mRNA and protein expressions were detected by quantitative real-time polymerase chain reaction assays (RT-qPCR) and Western blot analysis. The proliferation ability of GC cells was examined by (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide) MTT assays. The invasion and migration abilities of GC cells were evaluated by Transwell assays. The binding sites between miR-942-5p and HCG11/BRMS1 were confirmed by dual-luciferase reporter assays. Results showed that LncRNA HCG11 was downregulated in GC cells. Functionally, overexpression of HCG11 inhibited GC cell proliferation, migration, and invasion. In addition, lncRNA HCG11 was found to act as a molecular sponge of miR-942-5p. Furthermore, miR-942-5p promoted GC progression by suppressing lncRNA HCG11 expression. Besides that, BRMS1 was confirmed as a direct target of miR-942-5p. More importantly, breast cancer metastasis suppressor 1 (BRMS1) inhibited GC progression by upregulating lncRNA HCG11 and downregulating miR-942-5p. In conclusion, LncRNA HCG11 inhibited cell proliferation, migration, and invasion in GC by sponging miR-942-5p and upregulating BRMS1.
Collapse
|
22
|
LncRNA HOXA-AS2 promotes the progression of prostate cancer via targeting miR-509-3p/PBX3 axis. Biosci Rep 2021; 40:225235. [PMID: 32519740 PMCID: PMC7426630 DOI: 10.1042/bsr20193287] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) act as crucial modulators during the development of diverse cancers. Although various types of lncRNAs in prostate cancer (PCa) have been explored, quantities of lncRNAs still wait to be exploited. The present study is to probe the functions and mechanism of lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) in PCa. In the present study, we discovered that HOXA-AS2 was highly expressed in PCa tissues and cells. HOXA-AS2 depletion obviously influenced cell proliferation, migration, invasion, as well as epithelial-to-mesenchymal transition (EMT) progression. In addition, miR-509-3p had low expression in PCa cells and inversely modulated by HOXA-AS2. Cutting down HOXA-AS2 expression was capable of up-regulating miR-509-3p expression. In addition, HOXA-AS2 served as a competing endogenous RNA (ceRNA) through sponging miR-509-3p to release pre-B-cell leukemia homeobox 3 (PBX3) expression. The expression of PBX3 was noticeably high in tumor tissues. And PBX3 expression level was down-regulated markedly with the knockdown of HOXA-AS2. Rescue experiments certified the facilitated role of HOXA-AS2-miR-509-3p-PBX3 axis in regulating the progress of PCa. The present study may provide clues for exploration of novel therapeutic targets for PCa patients.
Collapse
|
23
|
Xu Y, Lin L, Lv D, Yan S, He S, Ge H. LncRNA-LINC01089 inhibits lung adenocarcinoma cell proliferation and promotes apoptosis via sponging miR-543. Tissue Cell 2021; 72:101535. [PMID: 33892399 DOI: 10.1016/j.tice.2021.101535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/22/2023]
Abstract
LINC01089, a newly discovered long non-coding RNA (lncRNA), has been reported to inhibit the progression of various types of cancers. This study aimed to characterize LINC01089 in the pathogenesis of lung adenocarcinoma (LUAD). LINC01089 expression in LUAD tissues or/and cells and its association with the overall survival of LUAD patients was analyzed in The Cancer Genome Atlas (TCGA)-LUAD database, by qRT-PCR or by Kaplan-Meier's curve. Databases of StarBase, LncBase, and DEmiRNA were used to predict and confirm the interaction between LINC01089 and potential LINC01089-targeted microRNAs (miRNAs). The expressions of these miRNAs in LUAD tissues or/and cells were determined by qRT-PCR, and dual-luciferase reporter assay was performed to validate lncRNA-miRNA interaction. The expressions of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cleaved caspase-3 in LUAD cells were analyzed by Western blot. LINC01089 improved overall survival of LUAD patients and was low-expressed in LUAD. Upregulating LINC01089 expression reduced LUAD cell viability, inhibited colony formation, enhanced apoptosis, accompanied by downregulated Bcl-2 and miR-543 and upregulated Bax and Cleaved caspase-3. MiR-543 was determined as a target gene of LINC01089, and was high-expressed in LUAD tissues. Upregulating miR-543 expression induced the opposite effects to LINC01089 upregulation on these cellular biological behaviors and the expressions of Bcl-2, Bax and Cleaved caspase-3. Moreover, the effects of miR-543 upregulation and LINC01089 upregulation were mutually counteracted by each other. LINC01089 inhibited lung adenocarcinoma cell proliferation and promoted apoptosis via sponging miR-543.
Collapse
Affiliation(s)
- Youwen Xu
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Dongqing Lv
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Shuangquan Yan
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Wenzhou Medical University, China
| | - Hongfei Ge
- Department of Thoracic Surgery, Taizhou Hospital of Wenzhou Medical University, China.
| |
Collapse
|
24
|
Long R, Liu Z, Li J, Zhang Y, Yu H. HCG11 up-regulation induced by ELK4 suppressed proliferation in vestibular schwannoma by targeting miR-620/ELK4. Cancer Cell Int 2021; 21:5. [PMID: 33402177 PMCID: PMC7786942 DOI: 10.1186/s12935-020-01691-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
Background Vestibular schwannoma (VS) is a kind of benign tumor deriving from the acoustic nerve sheath. Substantial long non-coding RNAs (lncRNAs) were illustrated to have crucial roles in multiple cancers. However, few lncRNAs were elucidated in VS. Methods HCG11, miR-620 and ELK4 expression were tested by RT-qPCR. Gain-of-function experiments were conducted to confirm the effect of HCG11 on VS. Results HCG11 possessed a low expression in VS cell lines. Overexpression of HCG11 repressed cell proliferation but accelerated apoptosis of VS cells. Moreover, we identified ELK4 stimulated the transcription of HCG11 and their affinity was verified by ChIP assays. MiR-620 was chosen to be a target of HCG11 and it was tested to have a high expression in VS cell lines. Moreover, depletion of miR-620 could inhibit cell proliferative ability while fostering apoptosis rate of VS cells. ELK4 was low expressed in VS cell lines and knockdown of ELK4 could rescue the effects made by HCG11 overexpression on progression of VS. Conclusions HCG11 could inhibit the growth of VS by targeting miR-620/ELK4 in VS cells. HCG11 was a novel therapeutic target for VS treatment.
Collapse
Affiliation(s)
- Ruiqing Long
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhuohui Liu
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jinghui Li
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yuan Zhang
- Otolaryngology Department, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- Neurosurgery Department, The First Affiliated Hospital of Kunming Medical University, No. 1 Building, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
25
|
Wang L, Zhou J, Zhang Y, Hu T, Sun Y. Long Non-Coding RNA HCG11 Aggravates Osteosarcoma Carcinogenesis via Regulating the microRNA-579/MMP13 Axis. Int J Gen Med 2020; 13:1685-1695. [PMID: 33408506 PMCID: PMC7781107 DOI: 10.2147/ijgm.s274641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies have suggested that long non-coding RNAs (lncRNAs) were involved in tumorigenesis of various human carcinomas, including osteosarcoma (OS). However, the expression and specific role of lncRNA HLA complex group 11 (HCG11) in OS remain unknown. The current study aimed at revealing the role of lncRNA HCG11 and its related mechanism in OS. Methods lncRNA HCG11 expression was verified with RT-qPCR followed by sub-localization determination. LncRNA-microRNA (miRNA) and miRNA–mRNA interactions were predicted by online bioinformatics websites. Validation was performed using dual-luciferase reporter gene assays, and gain- and loss-of-function experiments. The effects of lncRNA HCG11, miR-579 and matrix metalloproteinase 13 (MMP13) on the proliferation, migration and invasion, epithelial-mesenchymal transition (EMT) of OS cells were detected using cell counting kit-8 (CCK-8), Transwell assays and Western blot analysis. Results LncRNA HCG11 overexpression was observed in OS tissues and cell lines. Downregulation of lncRNA HCG11/MMP13 or overexpression of miR-579 blocked the progression of OS cells. LncRNA HCG11, which is located in the cytoplasm, promoted MMP13 expression through sponging miR-579. Conclusion LncRNA HCG11 might be beneficial for OS aggravation via sponging miR-579 and facilitating MMP13 expression, which represents a candidate biomarker and target for OS therapy.
Collapse
Affiliation(s)
- Lili Wang
- Clinical Laboratory Department, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Jingzhen Zhou
- Clinical Laboratory Department, Ningbo Second Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Yong Zhang
- Department of Bone Oncology, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| | - Tao Hu
- Department of Orthopaedics, The First People's Hospital of Yongkang, Yongkang 321300, Zhejiang, People's Republic of China
| | - Yongning Sun
- Clinical Laboratory Department, Ningbo Sixth Hospital, Ningbo 315000, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int 2020; 20:571. [PMID: 33292272 PMCID: PMC7694907 DOI: 10.1186/s12935-020-01665-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) is common male cancer with high mortality worldwide. Emerging evidence demonstrated that long noncoding RNAs (lncRNAs) play critical roles in various type of cancers including PC by serving as competing endogenous RNAs (ceRNAs) to modulate microRNAs (miRNAs). LncRNA activated by DNA damage (NORAD) was found to be upregulated in PC cells, while the detailed function and regulatory mechanism of NORAD in PC progression remains largely unclear. Methods Expression of NORAD in PC tissues and cell lines were detected by real-time quantitative PCR (qRT-PCR). NORAD was respectively overexpressed and knocked down by transfection with pcDNA-NORAD and NORAD siRNA into PC-3 and LNCap cells. Cell proliferation, invasion and apoptosis were determined by using CCK-8, Transwell and Flow cytometry assays, respectively. The target correlations between miR-30-5p and NORAD or RAB11A were confirmed by using dual luciferase reporter assay. Moreover, expression levels of RAB11A, the epithelial-mesenchymal transition (EMT) marker proteins and the Wnt pathway related proteins were measured by Western blotting. Tumor xenograft assay was used to study the effect of NORAD on tumor growth in vivo. Results NORAD was upregulated in PC tissues and cells. Overexpression of NORAD promoted cell proliferation, invasion, EMT, and inhibited cell apoptosis; while knockdown of NORAD had the opposite effect. NORAD was found to be functioned as a ceRNA to bind and downregulated miR-30a-5p that was downregulated in PC tumor tissues. Rescue experiments revealed that miR-30a-5p could weaken the NORAD-mediated promoting effects on cell proliferation, invasion and EMT. Furthermore, RAB11A that belongs to a member of RAS oncogene family was verified as a target of miR-30a-5p, and reintroduction of RAB11A attenuated the effects of miR-30a-5p overexpression on cell proliferation, invasion, EMT and apoptosis of PC cells. More importantly, silencing RAB11A partially reversed the promoting effects of NORAD overexpression on cell proliferation, invasion and EMT of PC cells via the WNT/β-catenin pathway. Lastly, tumorigenicity assay in vivo demonstrated that NORAD increased tumor volume and weight via miR-30a-5p /RAB11A pathway. Conclusion Our results indicated a significant role of NORAD in mechanisms associated with PC progression. NORAD promoted cell proliferation, invasion and EMT via the miR-30a-5p/RAB11A/WNT/β-catenin pathway, thus inducing PC tumor growth.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Nursing, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.
| | - Yang Li
- The Second Ward, Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| |
Collapse
|
27
|
Liu Y, Cui X, Wang C, Zhao S. LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis in atherosclerosis. Biol Res 2020; 53:44. [PMID: 33008472 PMCID: PMC7532112 DOI: 10.1186/s40659-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is the main pathological basis of coronary heart disease, cerebral infarction and peripheral vascular disease, which seriously endanger people's life and health. In recent years, long non-coding RNA (lncRNA) has been found to be involved in gene expression regulation, but the research on AS is still in the initial stage. In this study, we mainly studied the role of HCG11 in patients with AS. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR) was used to detect the expression of HCG11 and miR-144 in the serum of AS patients and healthy volunteers. Oxidation Low Lipoprotein (Ox-LDL), interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) radiation were used to establish human vascular smooth muscle cells (VSMCs) in vitro model. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The apoptosis rate was determined by flow cytometry (FACS) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining. The expression levels of Forkhead box protein F1 (FOXF1), B cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) were detected by qRT-PCR. Luciferase gene reporter and RNA pull down experiments confirmed the relationship between HCG11 and miR-144, miR-144 and FOXF1. RESULTS This study showed that HCG11 was significantly upregulated in patients with AS, while miR-144 was down-regulated in patients with AS. Ox-LDL and IL-6 in VSMCs induced up-regulation of HCG11 and down-regulation of miR-144. Overexpression of HCG11 promoted the proliferation and inhibited apoptosis of VSMCs. Luciferase gene reporter gene assay showed that HCG11 could bind to miR-144, and miR-144 could bind to FOXF1. Overexpression of miR-144 reversed the effect of HCG11 on VSMCs. CONCLUSIONS LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiyun Cui
- Department of Clinical Laboratory, Weapon Industry 206 Hospital, Xi'an, Shaanxi, 710061, China
| | - Cong Wang
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
28
|
Fan G, Jiao J, Shen F, Ren Q, Wang Q, Chu F. Long non-coding RNA HCG11 sponging miR-522-3p inhibits the tumorigenesis of non-small cell lung cancer by upregulating SOCS5. Thorac Cancer 2020; 11:2877-2886. [PMID: 32844573 PMCID: PMC7529553 DOI: 10.1111/1759-7714.13624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Numerous studies have shown that long non-coding RNA (lncRNA) is involved in various human diseases including non-small cell lung cancer (NSCLC). The aim of this study was to explore the potential role of lncRNA HCG11 in the pathogenesis of NSCLC. METHODS The mRNA expression of HCG11, miR-522-3p and SOCS5 was detected by RT-qPCR. The regulatory mechanism of lncRNA HCG11 was investigated by CCK-8, transwell and dual luciferase reporter assays. RESULTS Downregulation of lncRNA HCG11 and upregulation of miR-522-3p were found in NSCLC tissues and cells, and abnormal expressions of lncRNA HCG11 and miR-522-3p were related to adverse clinical outcomes of NSCLC patients. LncRNA HCG11 acted as a molecular sponge for miR-522-3p. Functionally, lncRNA HCG11 inhibited cell viability, migration and invasion in NSCLC by downregulating miR-522-3p. Further, miR-522-3p directly targeted SOCS5. lncRNA HCG11 could positively regulate SOCS5 expression in NSCLC. In addition, HCG11 downregulation or miR-522-3p overexpression abolished the inhibitory effect of SOCS5 on cell viability, migration and invasion in NSCLC. CONCLUSIONS LncRNA HCG11 inhibits cell viability, migration and invasion in NSCLC by functioning as a ceRNA of miR-522-3p to upregulate SOCS5.
Collapse
Affiliation(s)
- Gang Fan
- Department of Clinical LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Jin Jiao
- Department of Clinical LaboratoryShandong Maternal and Child Health Care HospitalJinanChina
| | - Feng Shen
- Department of Clinical LaboratoryShandong Maternal and Child Health Care HospitalJinanChina
| | - Qingxia Ren
- Department of Clinical LaboratoryPeople's Hospital of RizhaoRizhaoChina
| | - Qing Wang
- Department of ImagingThe People's Hospital of Zhangqiu AreaJinanChina
| | - Fulu Chu
- Department of Clinical LaboratoryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
29
|
Zhang Y, Zhang J, Mao L, Li X. Long noncoding RNA HCG11 inhibited growth and invasion in cervical cancer by sponging miR-942-5p and targeting GFI1. Cancer Med 2020; 9:7062-7071. [PMID: 32794340 PMCID: PMC7541137 DOI: 10.1002/cam4.3203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as essential regulators in cancer tumorigenesis. Our study aimed to explore the underlying mechanism of lncRNA human leukocyte antigen complex group 11 (HCG11) in cervical cancer (CC) progression. Long noncoding RNA HCG11 was downregulated in CC. Functional assays demonstrated that lncRNA HCG11 inhibited CC cell proliferation and invasion. Then, we confirmed that lncRNA HCG11 could directly bind to miR-942-5p. Moreover, inhibition of miR-942-5p suppressed the growth and invasion of CC cells, and growth factor-independent transcription repressor 1 (GFI1) gene was the target gene of miR-942-5p. Long noncoding RNA HCG11 increased the expression of GFI1 and suppressed cell proliferation and invasion by acting as a miR-942-5p sponge. Finally, the overexpression of lncRNA HCG11 suppressed the proliferation and metastasis of CC cells in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Zhang
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lin Mao
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xing Li
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
30
|
Zhou C, Zhao X, Duan S. The role of miR-543 in human cancerous and noncancerous diseases. J Cell Physiol 2020; 236:15-26. [PMID: 32542683 DOI: 10.1002/jcp.29860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) is a noncoding single-stranded RNA molecule that can regulate the posttranscriptional expression level of a gene by binding to the 3'-untranslated region (3'-UTR) of the target messenger RNA. miR-543 is a kind of miRNA, which plays an important role in the occurrence and development of various human cancerous and noncancerous diseases. miR-543 directly or indirectly regulates a large number of downstream target genes and plays an important role in cellular components, biological processes, and molecular functions. In addition, many studies have verified the regulatory mechanism, physiological role, biological function, and prognostic value of miR-543. Therefore, this article reviews the papers published in the past decade and elaborates on the research progress of miR-543 from the aspects of physiology and pathology, especially in cancerous and other noncancerous diseases. In particular, we pay attention to the expression patterns, direct targets, biological functions, related pathways, and prognostic value of miR-543 reported in experimental articles. And by comparing similar research articles, we point out existing controversies in this field to date, so as to facilitate further research in the future.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xin Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
32
|
Zeng S, Zhou C, Yang DH, Xu LS, Yang HJ, Xu MH, Wang H. LEF1-AS1 is implicated in the malignant development of glioblastoma via sponging miR-543 to upregulate EN2. Brain Res 2020; 1736:146781. [DOI: 10.1016/j.brainres.2020.146781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
|
33
|
Ji W, Mu Q, Liu XY, Cao XC, Yu Y. ZNF281-miR-543 Feedback Loop Regulates Transforming Growth Factor-β-Induced Breast Cancer Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:98-107. [PMID: 32512343 PMCID: PMC7281305 DOI: 10.1016/j.omtn.2020.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most common malignancy, and metastasis is the main cause of cancer-associated mortality in women worldwide. Transforming growth factor-β (TGF-β) signaling, an inducer of epithelial-to-mesenchymal transition (EMT), plays an important role in breast cancer metastasis. Abnormal expression of miR-543 is associated with tumorigenesis and progression of various human cancers; however, the knowledge about the role of miR-543 in breast cancer metastasis is still unknown. In this study, we demonstrated that miR-543 inhibits the EMT-like phenotype and TGF-β-induced breast cancer metastasis both in vitro and in vivo by targeting ZNF281. ZNF281 transactivates the EMT-related transcription factor ZEB1 and Snail. Furthermore, both ZEB1 and Snail can transcriptionally suppress miR-543 expression. Taken together, our data uncover the ZNF281-miR-543 feedback loop and provide a mechanism to extend the understanding of TGF-β network complexity.
Collapse
Affiliation(s)
- Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qiang Mu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Surgery, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Xiang-Yu Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xu-Chen Cao
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Yue Yu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
34
|
Dashti S, Taherian-Esfahani Z, Kholghi-Oskooei V, Noroozi R, Arsang-Jang S, Ghafouri-Fard S, Taheri M. In silico identification of MAPK14-related lncRNAs and assessment of their expression in breast cancer samples. Sci Rep 2020; 10:8316. [PMID: 32433496 PMCID: PMC7239855 DOI: 10.1038/s41598-020-65421-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase (MAP kinase) pathways participate in regulation of several cellular processes involved in breast carcinogenesis. A number of non-coding RNAs including both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) regulate or being regulated by MAPKs. We performed an in-silico method for identification of MAPKs with high number of interactions with miRNAs and lncRNAs. Bioinformatics approaches revealed that MAPK14 ranked first among MAPKs. Subsequently, we identified miRNAs and lncRNAs that were predicted to be associated with MAPK14. Finally, we selected four lncRNAs with higher predicted scores (NORAD, HCG11, ZNRD1ASP and TTN-AS1) and assessed their expression in 80 breast cancer tissues and their adjacent non-cancerous tissues (ANCTs). Expressions of HCG11 and ZNRD1ASP were lower in tumoral tissues compared with ANCTs (P values < 0.0001). However, expression levels of MAPK14 and NORAD were not significantly different between breast cancer tissues and ANCTs. A significant association was detected between expression of HCG11 and estrogen receptor (ER) status in a way that tumors with up-regulation of this lncRNA were mostly ER negative (P value = 0.04). Expressions of ZNRD1ASP and HCG11 were associated with menopause age and breast feeding duration respectively (P values = 0.02 and 0.04 respectively). There was a trend towards association between ZNRD1ASP expression and patients' age of cancer diagnosis. Finally, we detected a trend toward association between expression of NORAD and history of hormone replacement therapy (P value = 0.06). Expression of MAPK14 was significantly higher in grade 1 tumors compared with grade 2 tumors (P value = 0.02). Consequently, the current study provides evidences for association between lncRNA expressions and reproductive factors or tumor features.
Collapse
Affiliation(s)
- Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi-Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Sharam Arsang-Jang
- Department of Biostatistics and Epidemiology, Cancer Gene Therapy Research Center, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Zeng Z, Cheng J, Ye Q, Zhang Y, Shen X, Cai J, Li M. A 14-Methylation-Driven Differentially Expressed RNA as a Signature for Overall Survival Prediction in Patients with Uterine Corpus Endometrial Carcinoma. DNA Cell Biol 2020; 39:975-991. [PMID: 32397815 DOI: 10.1089/dna.2019.5313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA methylation has been implicated as an important mechanism for the development of uterine corpus endometrial carcinoma (UCEC), indicating that methylation-driven genes may be potential biomarkers for survival prediction. In this study, we aimed to identify a new prognostic methylation signature for UCEC based on differentially expressed genes (DEGs) and long noncoding RNAs (lncRNAs) (DELs). Sample-matched RNA-sequencing and methylation-array data were downloaded from The Cancer Genome Atlas database, by analysis of which a total of 269 DEGs and 4 DELs were identified to be methylation driven. Least absolute shrinkage and selection operator analysis screened that 14 methylation-driven genes were significantly associated with overall survival (OS) and thus were used as a signature to establish a prognostic risk model. Based on the median threshold, the patients were divided into the low-risk and the high-risk groups, which showed significantly different survival periods under the Kaplan-Meier curve. The area under receiver operating characteristic curve (AUC) was 0.934, 0.919, and 0.952 for the training, validation, and entire cohort, respectively. Stratification analysis showed that the established risk model may add prognostic values to conventional clinical factors (age, neoplasm histologic grade, and clinical stage). A nomogram was constructed based on the risk model and clinical parameters, with the AUC of 0.978 and c-index of 0.8079. Database for Annotation, Visualization, and Integrated Discovery (DAVID) function enrichment and Human Protein Atlas (HPA) protein expression validation showed 5 of these 14 genes may be especially important for UCEC (hypermethylated lowly expressed: CCBE1, FOXL2, PHLDB2, and DTNA; hypomethylated highly expressed: CCNE1). Comparison with breast cancer in the methylation level indicated ABCA12, CCNE1, and CLRN3 may be specific methylation-driven genes for UCEC. LncRNA HCG11 may function by coexpressing with DTNA. In conclusion, this 14-DNA methylation signature combined with clinical factors may a potentially effective biomarker in predicting OS for UCEC patients.
Collapse
Affiliation(s)
- Zhi Zeng
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juan Cheng
- Department of Gynecology and The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingjian Ye
- Department of Gynecology and The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Manchao Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Qu Z, Li S. Long noncoding RNA LINC01278 favors the progression of osteosarcoma via modulating miR-133a-3p/PTHR1 signaling. J Cell Physiol 2020. [PMID: 31994731 DOI: 10.1002/jcp.29582] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
As one of the most aggressive malignancies, osteosarcoma has high risks of death. Although long noncoding RNAs (lncRNAs) may promote the osteosarcoma progression as verified, the potential molecular mechanism of lncRNAs in osteosarcoma remains unknown. Herein, we analyzed lncRNA microarray of osteosarcoma and selected LINC01278 as the study object. Then, we found that the expression of LINC01278 tested by quantitative reverse-transcription polymerase chain reaction was enhanced in tumor tissues compared with the para-carcinoma tissues and related to clinical stage, distant metastasis in osteosarcoma. In addition, the clinical outcomes were poor in osteosarcoma patients with high LINC01278 level. Moreover, LINC01278 promoted proliferation and restrained apoptosis in osteosarcoma cells. Afterward, mechanistic studies turned out that LINC01278 was a competing endogenous RNA of parathyroid hormone type 1 receptor (PTHR1) in osteosarcoma by sponging miR-133a-3p, which was considered as a tumor inhibitor in osteosarcoma. Furthermore, PTHR1 downregulation restored the impacts of inhibited miR-133a-3p on the processes in osteosarcoma cells. Our findings clarified that the carcinogenic effect of LINC01278 in osteosarcoma was mediated through miR-133a-3p/PTHR1 signaling, creating a novel insight into good targets for the therapy and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Zhigang Qu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|