1
|
Sekimoto K, Kinjo H, Murakami M, Ohashi A, Fukui R, Nagasaki-Maeoka E, Inagaki Y, Takayama T, Ikeda K, Takayama KI, Inoue S, Tsuji M, Otsuki J, Fujiwara K. Effects of the number of ethylene glycol units on the efficacy of novel complex I inhibitor 9bw. Biochem Biophys Rep 2025; 42:101981. [PMID: 40207083 PMCID: PMC11979437 DOI: 10.1016/j.bbrep.2025.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
4'-Iodobiphenyl nonaethylene glycol ether (9bw) is a novel small molecule, composed of a biphenyl unit and 9 ethylene glycol (EG) units. Recently, we found that 9bw induces apoptosis in cancer cells by inhibiting mitochondrial respiratory complex I (CI) and accordingly reducing cellular ATP level. In addition, 9bw shows little effect on normal cells, suggesting that 9bw is a potential antitumor agent with few adverse effects. However, the exact molecular mechanisms by which 9bw acts on CI are still elusive. To clarify the molecular structure critical for 9bw's function, we tested the function of 9bw analogues on human oral squamous cell carcinoma lines HSC4 and Ca9-22. The analogues were 4-hydroxy-4'-iodobiphenyl (HIOP), I-BP-EG3, I-BP-EG6, and I-BP-EG12 containing 0, 3, 6, and 12 EG units, respectively. Our results demonstrated that I-BP-EG6 and I-BP-EG12 inhibited CI to a similar extent as 9bw, whereas I-BP3 and HIOP showed no effect on CI activity. These observations indicate that the number of EG units is crucial for the activity of 9bw and its analogues. As high-performance liquid chromatography (HPLC) analysis demonstrated that both HIOP and I-BP-EG3 could be incorporated into mitochondria abundantly, the number of EG units probably affects CI inhibitory function of 9bw and its analogues rather than their efficacy to enter cell and mitochondria.
Collapse
Affiliation(s)
- Kazuaki Sekimoto
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hanaka Kinjo
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Mizuki Murakami
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Rei Fukui
- Department of Pathology, Nihon University School of Dentistry, Chiyoda-ku, 101-8310, Japan
| | - Eri Nagasaki-Maeoka
- Department of Pediatric Surgery, Jichi Medical University, Saitama Medical Center, Saitama, 330-8503, Japan
| | - Yoshinori Inagaki
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-0032, Japan
| | - Tadateru Takayama
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-0032, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama, 350-1241, Japan
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Motonori Tsuji
- Institute of Molecular Function, 2-105-14, Takasu, Misato-shi, Saitama, 341-0037, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
2
|
Moradpour Z, Khavanin A, Abdolmaleki P, Hajipour-Verdom B, Mola SJ, Hamidi M, Zendehdel R. Cell toxicity assessment in co-treatment to metalworking fluids and vibration: an in vitro study of occupational exposure setting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2766-2775. [PMID: 37952631 DOI: 10.1080/09603123.2023.2272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
This study was designed to study dual risk of MWFs and vibration according to exposure simulation of selected industry. Air samples of two types MWFs were evaluated according to NIOSH 5026. Vibration acceleration exposure was assessed based on the ISO 8041:2005 standard. Cell treatment of both MWF air samples and vibration as the same as dual exposure to MWF airborne and vibration was assessed. There is a potency of nitrosamine formation in airborne samples of ethylamine containing MWF, while heterocyclic including bore is found in airborne bore containing MWF. DNA breaks caused by boron-containing MWF were higher than nitrosamine air samples. Oxidative stress production and chronic inflammation were highlighted in the response to cell treatments. The risk of cell toxicity in machining workers was evaluated at a level lower than the occupational exposure limit for MWFs and vibration.
Collapse
Affiliation(s)
- Zahra Moradpour
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mola
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Hamidi
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Han Z, Sun LW, Wu XT, Yang X, Fan YB. Nonlinear dynamics of membrane skeleton in osteocyte. Comput Methods Biomech Biomed Engin 2023; 26:249-260. [PMID: 35363098 DOI: 10.1080/10255842.2022.2057796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteocytes play an important role in mechanosensation and conduction in bone tissue, and the change of mechanical environment can affect the sensitivity of osteocytes to external stimulation. The structure of osteocytes will be changed when they are subjected to vibrations, which influence the mechanosensitivity of osteocytes and alter the regulation of bone remodeling process. As an important mechanotransduction structure in osteocytes, the membrane skeleton greatly affects the mechanosensation and conduction of osteocytes. However, the dynamic responses of membrane skeleton to the vibration and the structural changes of membrane skeleton are unclear. Therefore, we applied a nonlinear dynamics method to explain the time-dependent changes of membrane skeleton. The semi-ellipsoidal reticulate shell structure of membrane skeleton is built based on the experimental observation in our previous work. Then, the nonlinear dynamic equations of membrane skeleton are established according to the theory of plate and shell dynamics, and the displacement-time curves, phase portraits, and Poincaré maps of membrane skeleton structure were obtained. The numeration results show that under the vibration stimulation of 15 Hz, 30 Hz, 60 Hz, and 90 Hz, the membrane skeleton is destroyed after a transient equilibrium position vibration. The vibration of 15 Hz has the most destructive effect on the membrane skeleton, the natural frequency of membrane skeleton may be less than 15 Hz. In addition, the chaos phenomenon occurs to the membrane skeleton during vibration. As a damping factor, the existence of viscosity alleviates the damage of structure. This study can help us to understand the oscillation characteristic of membrane skeleton in osteocyte.
Collapse
Affiliation(s)
- Zhuang Han
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Tian Y, Ming J. Melatonin inhibits osteoclastogenesis via RANKL/OPG suppression mediated by Rev-Erbα in osteoblasts. J Cell Mol Med 2022; 26:4032-4047. [PMID: 35726597 PMCID: PMC9279587 DOI: 10.1111/jcmm.17440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic osteoporosis is secondary osteoporosis and a serious complication of diabetes with a high incidence rate and poor prognosis. The specific mechanism of diabetic osteoporosis is unclear, and prevention and treatment options are limited. Recently, melatonin has been found to prevent and treat diabetic osteoporosis. Herein, we investigated the mechanism whereby melatonin inhibits osteoclastogenesis and identified a new target for osteoporosis treatment. We established an in vitro osteoblast–osteoclast co‐culture system as a diabetic osteoporosis model. Osteoclastogenesis was determined using tartrate‐resistant acid phosphatase staining and cathepsin K expression. Real‐time PCR was used to ascertain expression of microRNA mir‐882, targeting Rev‐Erbα. Western blotting was performed to detect the expression of Rev‐Erbα, receptor activator of NF‐kB ligand (RANKL), and osteoprotegerin (OPG), and ELISA was utilized to analyse the secreted form of RANKL. High glucose promoted osteoclastogenesis and elevated the RANKL/OPG ratio in osteoblasts, while melatonin reversed these effects. High glucose inhibited Rev‐Erbα expression, while melatonin promoted its expression. Conversely, high glucose promoted mir‐882 expression, while melatonin inhibited it. We infer that melatonin inhibits RANKL expression in osteoblasts via the mir‐882/Rev‐Erbα axis, thus inhibiting osteoclastogenesis. Our findings provide insights into diabetic osteoporosis and identify a new therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yihao Tian
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jian Ming
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
5
|
Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3935803. [PMID: 35677099 PMCID: PMC9170394 DOI: 10.1155/2022/3935803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
This study was conducted to better understand the specific behavior of the intraosseous fluid flow. We calculated the number and distribution of bone canaliculi around the osteocytes based on the varying shapes of osteocytes. We then used these calculated parameters and other bone microstructure data to estimate the anisotropy permeability of the lacunar-canalicular network. Poroelastic finite element models of the osteon were established, and the influence of the osteocyte shape on the fluid flow properties of osteons under an axial displacement load was analyzed. Two types of boundary conditions (BC) that might occur in physiological environments were considered on the cement line of the osteon. BC1 allows free fluid passage from the outer elastic restraint boundary, and BC2 is impermeable and allows no free fluid passage from outer displacement constrained boundary. They both have the same inner boundary conditions that allow fluid to pass through. Changes in the osteocyte shape altered the maximum value of pressure gradient (PG), pore pressure (PP), fluid velocity (FV), and fluid shear stress (FSS) relative to the reference model (spherical osteocytes). The maximum PG, PP, FV, and FSS in BC2 were nearly 100% larger than those in BC1, respectively. It is found that the BC1 was closer to the real physiological environment. The fluid flow along different directions in the elongated osteocyte model was more evident than that in other models, which may have been due to the large difference in permeability along different directions. Changes in osteocyte shape significantly affect the degrees of anisotropy of fluid flow and porous media of the osteon. The model presented in this study can accurately quantify fluid flow in the lacunar-canalicular network.
Collapse
|
6
|
Jiang M, Ding Y, Xu S, Hao X, Yang Y, Luo E, Jing D, Yan Z, Cai J. Radiotherapy-induced bone deterioration is exacerbated in diabetic rats treated with streptozotocin. Braz J Med Biol Res 2021; 54:e11550. [PMID: 34730682 PMCID: PMC8555449 DOI: 10.1590/1414-431x2021e11550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.
Collapse
Affiliation(s)
- Maogang Jiang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shiwei Xu
- Department of Medical Technical Support, NCO School of Army Medical University, Shijiazhuang, China
| | - Xiaoxia Hao
- Laboratory of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Fu Z, Huang X, Zhou P, Wu B, Cheng L, Wang X, Zhu D. Protective effects of low-magnitude high-frequency vibration on high glucose-induced osteoblast dysfunction and bone loss in diabetic rats. J Orthop Surg Res 2021; 16:650. [PMID: 34717702 PMCID: PMC8557505 DOI: 10.1186/s13018-021-02803-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Low-magnitude high-frequency vibration (LMHFV) has been reported to be capable of promoting osteoblast proliferation and differentiation. Reduced osteoblast activity and impaired bone formation were related to diabetic bone loss. We investigated the potential protective effects of LMHFV on high-glucose (HG)-induced osteoblasts in this study. In addition, the assessment of LMHFV treatment for bone loss attributed to diabetes was also performed in vivo.
Method MC3T3-E1 cells induced by HG only or treated with LMHFV were treated in vitro. The experiments performed in this study included the detection of cell proliferation, migration and differentiation, as well as protein expression. Diabetic bone loss induced by streptozotocin (STZ) in rats was established. Combined with bone morphometric, microstructure, biomechanical properties and matrix composition tests, the potential of LMHFV in treating diabetes bone loss was explored. Results After the application of LMHFV, the inhibiting effects of HG on the proliferation, migration and differentiation of osteoblasts were alleviated. The GSK3β/β-catenin pathway was involved in the protective effect of LMHFV. Impaired microstructure and biomechanical properties attributed to diabetes were ameliorated by LMHFV treatment. The improvement of femur biomechanical properties might be associated with the alteration of the matrix composition by the LMHFV. Conclusion LMHFV exhibited a protective effect on osteoblasts against HG by regulating the proliferation, migration and differentiation of osteoblasts. The function of promoting bone formation and reinforcing bone strength made it possible for LMHFV to alleviate diabetic bone loss. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02803-w.
Collapse
Affiliation(s)
- Zhaoyu Fu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Huang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengcheng Zhou
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Wu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Long Cheng
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Possible Mechanisms for the Effects of Sound Vibration on Human Health. Healthcare (Basel) 2021; 9:healthcare9050597. [PMID: 34069792 PMCID: PMC8157227 DOI: 10.3390/healthcare9050597] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
This paper presents a narrative review of research literature to “map the landscape” of the mechanisms of the effect of sound vibration on humans including the physiological, neurological, and biochemical. It begins by narrowing music to sound and sound to vibration. The focus is on low frequency sound (up to 250 Hz) including infrasound (1–16 Hz). Types of application are described and include whole body vibration, vibroacoustics, and focal applications of vibration. Literature on mechanisms of response to vibration is categorized into hemodynamic, neurological, and musculoskeletal. Basic mechanisms of hemodynamic effects including stimulation of endothelial cells and vibropercussion; of neurological effects including protein kinases activation, nerve stimulation with a specific look at vibratory analgesia, and oscillatory coherence; of musculoskeletal effects including muscle stretch reflex, bone cell progenitor fate, vibration effects on bone ossification and resorption, and anabolic effects on spine and intervertebral discs. In every category research on clinical applications are described. The conclusion points to the complexity of the field of vibrational medicine and calls for specific comparative research on type of vibration delivery, amount of body or surface being stimulated, effect of specific frequencies and intensities to specific mechanisms, and to greater interdisciplinary cooperation and focus.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a prevalent chronic disease affecting millions of people in the world. Bone fragility is a complication found in diabetic patients. Although osteoblasts and osteoclasts are directly affected by diabetes, herein we focus on how the diabetic state-based on hyperglycemia and accumulation of advanced glycation end products among other features-impairs osteocyte functions exerting deleterious effects on bone. RECENT FINDINGS In the last years, several studies described that diabetic conditions cause morphological modifications on lacunar-canalicular system, alterations on osteocyte mechanoreceptors and intracellular pathways and on osteocyte communication with other cells through the secretion of proteins such as sclerostin or RANKL. This article gives an overview of events occurring in diabetic osteocytes. In particular, mechanical responses seem to be seriously affected in these conditions, suggesting that mechanical sensibility could be a target for future research in the field.
Collapse
Affiliation(s)
- Arancha R Gortázar
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain.
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU,CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain.
| | - Juan A Ardura
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU,CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain
| |
Collapse
|
10
|
Li Y, Shrestha A, Zhang H, Li L, Li D, Fu T, Song J, Ji P, Huang Y, Chen T. Impact of diabetes mellitus simulations on bone cell behavior through in vitro models. J Bone Miner Metab 2020; 38:607-619. [PMID: 32415376 DOI: 10.1007/s00774-020-01101-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is related to impaired bone healing and an increased risk of bone fractures. While it is recognized that osteogenic differentiation and the function of osteoblasts are suppressed in DM, the influence of DM on osteoclasts is still unclear. Hyperglycemia and inflammatory environment are the hallmark of DM that causes dysregulation of various pro-inflammatory cytokines and alternated gene expression in periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. A methodological review on conceptual and practical implications of in vitro study models is used for DM simulation on bone cells. Several major databases were screened to find literature related to the study objective. Published literature within last 20 years that used in vitro DM-simulated models to study how DM affects the cellular behavior of bone cells were selected for this review. Studies utilizing high glucose and serum acquired from diabetic animals are the mainly used methods to simulate the diabetic condition. The combination with various simulating factors such as lipopolysaccharide (LPS), hydrogen peroxide (H2O2), and advanced glycation end products (AGEs) have been reported in diabetic situations in vitro, as well. Through screening procedure, it was evident DM-simulated conditions exerted negative impact on bone-related cells. However, inconsistent results were found among different reported studies, which could be due to variation in culture conditions, concentrations of the stimulating factors and cell lineage, etc. This manuscript has concisely reviewed currently existing DM-simulated in vitro models and provides valuable insights of detailed components in simulating DM conditions in vitro. Studies using DM-simulated microenvironment revealed that in vitro simulation negatively impacted periodontal ligament cells, osteoblasts, osteocytes, osteoclasts, and osteoclast precursors. Contrarily, studies also indicated beneficial influence on bone-related cells when such conditions are reversed.
Collapse
Affiliation(s)
- Yihan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426#Songshibei Road, Yubei District, Chongqing, 401147, P.R. China.
| |
Collapse
|
11
|
Liu D, Wang Y, Pan Z, Huang Z, Chen F. cAMP regulates 11β-hydroxysteroid dehydrogenase-2 and Sp1 expression in MLO-Y4/MC3T3-E1 cells. Exp Ther Med 2020; 20:2166-2172. [PMID: 32765692 PMCID: PMC7401907 DOI: 10.3892/etm.2020.8942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) is one of the key enzymes in glucocorticoid metabolism, which can inactivate local corticosterone and regulate the level of active glucocorticoid in tissues. The expression of 11β-HSD2 and its regulatory pathway serve an important role in the apoptosis of steroid induced osteonecrosis of the femoral head (SANFH). The present study aimed to identify the regulatory effects of cAMP on the expression of Sp1 transcription factor (Sp1) and 11β-HSD2 in osteocytes at the cellular level. Murine long bone osteocyte Y4 (MLO-Y4) clone cells and mouse embryo osteoblast-like (MC3T3-E1) cells were cultured in vitro with adenylate cyclase activator or inhibitor (forskolin and SQ22536, respectively) to investigate the effects of alterations to intracellular cAMP levels. mRNA and protein expression levels of Sp1 and 11β-HSD2 were detected by reverse transcription-quantitative PCR and western blotting, respectively. Compared with the negative control group, the mRNA and protein expression levels of Sp1 were significantly increased in the activation group, whereas Sp1 expression levels were significantly decreased in the inhibition group. Similarly, compared with the negative control group, the mRNA and protein expression levels of 11β-HSD2 were significantly increased in the activator group, but significantly decreased in the inhibitor group. The aforementioned results indicated that intracellular cAMP levels significantly regulated the expression of Sp1 and 11β-HSD2 in mouse osteocytes and osteoblasts. Therefore, the present study suggested a potential therapeutic strategy for the prevention of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Di Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhen Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|