1
|
Ma X, He Y, Yang Y, Lu T, Tang Z, Cui Y, Wang R. YY1-induced DDX18 modulates EMT via the AKT/mTOR pathway in esophageal cancer: a novel therapeutic target. J Transl Med 2025; 23:562. [PMID: 40394670 PMCID: PMC12090415 DOI: 10.1186/s12967-025-06555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Esophageal cancer is the 11th most common malignancy and the 7th leading cause of cancer-related death globally. Identifying key molecules and underlying mechanisms in the progression of esophageal cancer represents an effective strategy for developing novel therapeutic approaches. METHODS DDX18 expression in clinical specimens was evaluated by immunohistochemistry and western blot analysis. Functional assays were performed in cells with either DDX18 knockdown or overexpression. Dual luciferase reporter assays and chromatin immunoprecipitation (ChIP) were conducted to validate the interaction between YY1 and the DDX18 promoter. A xenograft tumor model was utilized to investigate the role of DDX18 in vivo in esophageal cancer. RESULTS DDX18 was found to be markedly overexpressed in esophageal cancer, with its levels significantly higher in patients with pathological grade III compared to those with grades I-II. In vitro, DDX18 enhanced cell proliferation, migration, and invasion, while concurrently suppressing apoptosis. Furthermore, DDX18 promoted epithelial-mesenchymal transition (EMT) and activated the AKT/mTOR signaling pathway. The use of AKT inhibitors effectively abrogated the oncogenic effects of DDX18. Dual luciferase and ChIP assays confirmed that YY1 binds to and stimulates DDX18 transcription. In rescue experiments, YY1 countered the inhibitory effects of DDX18 knockdown on cell proliferation, EMT, and AKT/mTOR activation. In vivo, DDX18 knockdown resulted in reduced tumor growth. CONCLUSIONS The transcription of DDX18 was activated by YY1, and DDX18 promoted tumor cell growth and EMT through the AKT/mTOR signaling pathway in esophageal cancer cells.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yulu He
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Yang J. Emerging roles of long non-coding RNA FOXP4-AS1 in human cancers: From molecular biology to clinical application. Heliyon 2024; 10:e39857. [PMID: 39539976 PMCID: PMC11558633 DOI: 10.1016/j.heliyon.2024.e39857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a long non-coding RNA (lncRNA) situated on the human chromosome 6p21.1 locus. Previous research has demonstrated that FOXP4-AS1 is dysregulated in various cancers and exhibits a dual purpose as a tumor suppressor or oncogene in specific types of cancer. The levels of FOXP4-AS1 are significantly correlated with clinical features of cancer as well as prognosis. Additionally, FOXP4-AS1 is stimulated by transcription factors ATF3, YY1, PAX5, and SP4. The molecular mechanisms of FOXP4-AS1 in cancer are quite complex. It competitively sponges multiple miRNAs, bidirectionally regulates the levels of host gene FOXP4, activates the PI3K/AKT, Wnt/β-catenin, and ERK/MAPK signaling pathways, and recruits chromatin-modifying enzymes or interacts with other proteins to regulate malignant phenotypes of tumors, including proliferation, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In this review, we provide an overview of the latest developments in FOXP4-AS1 oncology research, outlines its molecular regulatory networks in cancer, and discusses its prospective relevance as a cancer therapeutic target as well as a biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Shen GY, Zhang Y, Huang RZ, Huang ZY, Yang LY, Chen DZ, Yang SB. FOXP4-AS1 promotes CD8 + T cell exhaustion and esophageal cancer immune escape through USP10-stabilized PD-L1. Immunol Res 2024; 72:766-775. [PMID: 38687433 DOI: 10.1007/s12026-024-09482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Esophageal cancer (EC) is the 9th most frequently diagnosed malignancy globally with unfavorable prognosis. Immune escape is one of the principal factors leading to poor survival, however, the mechanism underlying immune escape remains largely uninvestigated. The xenograft mouse model and EC cell-CD8+ cytotoxic T lymphocytes (CTLs) co-culture system were established. Immunohistochemistry, qRT-PCR or western blot were employed to detect the levels of long non-coding RNA (lncRNA) FOXP4-AS1, PD-L1, USP10 and other molecules. The abundance of T cells, cytokine production and cell apoptosis were monitored by flow cytometry. The viability of CTLs was assessed by Trypan blue staining. The binding between FOXP4-AS1 and USP10 was validated by RNA pull-down assay, and the interaction between USP10 and PD-L1, as well as the ubiquitination of PD-L1, were detected by co-immunoprecipitation. The elevation of FOXP4-AS1 in EC was associated with decreased CTL abundance, and upregulated PD-L1 facilitated CTL apoptosis in EC. FOXP4-AS1 accelerated EC tumor growth by decreasing the abundance of tumor infiltrating CTLs in vivo. FOXP4-AS1 inhibited the viability of CTLs and facilitated the cytotoxicity and exhaustion of CTLs. In Kyse 450 cell-CTL co-culture system, FOXP4-AS1 suppressed the viability and abundance of CTLs, and inhibited EC cell apoptosis via PD-L1. Mechanistically, FOXP4-AS1 regulated the ubiquitination of PD-L1 through deubiquitinating enzyme USP10. FOXP4-AS1 promoted CTL exhaustion and EC immune escape through USP10-stabilized PD-L1. HIGHLIGHTS: PD-L1 facilitated CD8+ T cell apoptosis in EC. Upregulated FOXP4-AS1 promoted EC tumor growth by inhibiting the viability and facilitating the cytotoxicity and exhaustion of tumor infiltrating CD8+ T cells. FOXP4-AS1 suppressed the viability and abundance of CD8+ T cells through USP10-mediated deubiquitination of PD-L1.
Collapse
Affiliation(s)
- Guo-Yi Shen
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China.
| | - Yi Zhang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Rong-Zhi Huang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Zhi-Yong Huang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Le-Yi Yang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Ding-Zhu Chen
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| | - Shao-Bin Yang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli West Road, Xiangcheng District, Zhangzhou City, 363000, Fujian Province, China
| |
Collapse
|
4
|
Liu L, Zhao J, Guo H, Jia J, Shi L, Ma J, Zhang Z. Participation of Long Noncoding RNA FOXP4-AS1 in the Development and Progression of Endometrioid Carcinoma with Epigenetically Silencing DUSP5. Cancer Biother Radiopharm 2024; 39:451-462. [PMID: 38512300 DOI: 10.1089/cbr.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs), as emerging regulators of a wide variety of biological processes via diverse mechanisms, have been demonstrated to be of increasing importance in biology. Genome-wide association studies of tumor samples have identified several lncRNAs as either oncogenes or tumor suppressors in various types of cancers. In recent years, the importance of lncRNAs, especially in endometrioid cancer (EEC), has become increasingly well understood. The lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) has been reported to fulfill roles in several types of cancers; however, the main biological function and associated underlying molecular mechanism of FOXP4-AS1 in EEC have yet to be fully elucidated. The present study therefore aimed to investigate how RNA FOXP4-AS1 may participate in the development and progression of endometrioid carcinoma tissues. Materials and Methods: In the present study, the expression level of FOXP4-AS1 was investigated in endometrioid carcinoma tissues and matching nearby normal endometrial tissues collected from patients receiving surgery at the hospital. A series of molecular biological assays were performed to investigate the effect of FOXP4-AS1 on cell proliferation, cell migration, and cell invasion. Results: An increased concentration of FOXP4-AS1 was identified in endometrioid carcinoma samples and cell lines compared with the corresponding controls, and this lncRNA was found to be positively correlated with advanced FIGO stages in patients with endometrial cancer. Furthermore, knocking down endogenous FOXP4-AS1 led to a significant reduction in the colony formation number and a significant inhibition of cell proliferation, cell migration, and cell invasion in endometrioid carcinoma cells. Moreover, dual-specificity phosphatase 5 (DUSP5), which is lowly expressed in endometrioid carcinoma tissues cells and negatively modulated by FOXP4-AS1, was identified as the downstream target molecule of FOXP4-AS1. Subsequently, the mechanistic experiments confirmed that, through binding to enhancer of zeste homolog 2 (EZH2; one of the catalytic subunits of polycomb repressive complex 2 [PRC2]), FOXP4-AS1 could epigenetically suppress the expression of DUSP5. Finally, the oncogenic function of the FOXP4-AS1/EZH2/DUSP5 axis in endometrioid carcinoma was confirmed via rescue assays. Conclusions: The findings of the present study have highlighted how FOXP4-AS1 fulfills an oncogenic role in endometrioid carcinoma, and targeting FOXP4-AS1 and its pathway may provide new biomarkers for patients with endometrioid carcinoma.
Collapse
Affiliation(s)
- Leilei Liu
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingyun Zhao
- Department of Reproduction, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingde Jia
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Shi
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Yao H, Zhang S, Xie H, Fan Y, Miao M, Zhu R, Yuan L, Gu M, You Y, You B. RCN2 promotes Nasopharyngeal carcinoma progression by curbing Calcium flow and Mitochondrial apoptosis. Cell Oncol (Dordr) 2023; 46:1031-1048. [PMID: 36952101 PMCID: PMC10356900 DOI: 10.1007/s13402-023-00796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVE Evidence suggests that calcium release from the endoplasmic reticulum (ER) can be induced to cause calcium overload, which in turn can trigger mitochondrial-dependent apoptosis. Dysregulation of systemic calcium homeostasis and changing levels of calcium-binding proteins have been shown to be associated with the malignant behavior of tumors. However, the precise molecular mechanism underlying Nasopharyngeal carcinoma (NPC) remains uncertain. METHODS Reticulocalbin (RCN2) expression in NPC was assessed using GEO database, western blot analysis and qRT-PCR. Apoptosis was assessed using flow cytometric analysis and the expression levels of apoptosis-related proteins were determined using western blot analysis. Intracellular calcium ion concentrations were measured using fluorescence imaging. The findings from these analyses were validated in vitro using nude mice models. Luciferase and ChIP assays were used to measure transcriptional regulation. Clinical significance was evaluated using tissue microarray analysis (n=150). RESULTS Our results showed that RCN2 promotes malignancy by causing Ca2+ flow imbalance, which leads to the initiation of the stress-mediated mitochondrial apoptosis pathway. We demonstrate that calreticulin (CALR) resides primarily in the endoplasmic reticulum and interacts with RCN2. Moreover, the transcription factors YY1 and homeobox protein goosecoid (GSC) both contribute to the initiation of RCN2 transcription by directly binding to the predicted promoter region of RCN2. Finally, high expression of RCN2 combined with high expression of GSC and YY1 may serve as an important clinical biomarker of poor prognosis in patients with NPC. CONCLUSION YY1 and GSC are upstream regulators of RCN2, involved in mitochondrial calcium overload and stress-induced mitochondrial apoptosis. Thus, they can play significant role in the malignant development of NPCs.
Collapse
Affiliation(s)
- Hui Yao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
- Changhai Hospital of Shanghai, No. 168 Changhai Road, Shanghai, 200433, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yue Fan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Mengyu Miao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Rui Zhu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Ling Yuan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| |
Collapse
|
6
|
Shi ZL, Zhou GQ, Guo J, Yang XL, Yu C, Shen CL, Zhu XG. Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis. Cancer Biother Radiopharm 2022; 37:893-906. [PMID: 33481661 PMCID: PMC9805880 DOI: 10.1089/cbr.2020.4242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Knowledge about the prognostic role of long noncoding RNA (lncRNA) in colorectal cancer (CRC) is limited. Therefore, we constructed a lncRNA-related prognostic model based on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Materials and Methods: CRC transcriptome and clinical data were downloaded from the GSE20916 dataset and the TCGA database, respectively. R software was used for data processing and analysis. The differential lncRNA expression within the two datasets was first screened, and then intersections were measured. Cox regression and the Kaplan-Meier method were used to evaluate the effects of various factors on prognosis. The area under the curve (AUC) of the receiver operating characteristic curve and a nomogram based on multivariate Cox analysis were used to estimate the prognostic value of the lncRNA-related model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to elucidate the significantly involved biological functions and pathways. Results: A total of 11 lncRNAs were crossed. The univariate Cox analysis screened out two lncRNAs, which were analyzed in the multivariate Cox analysis. A nomogram based on the two lncRNAs and other clinicopathological risk factors was constructed. The AUC of the nomogram was 0.56 at 3 years and 0.71 at 5 years. The 3-year nomogram model was compared with the ideal model, which showed that some indices of the 3-year model were consistent with the ideal model, suggesting that our model was highly accurate. The GO and KEGG enrichment analyses showed that positive regulation of secretion by cells, positive regulation of secretion, positive regulation of exocytosis, endocytosis, and the calcium signaling pathway were differentially enriched in the two-lncRNA-associated phenotype. Conclusions: A two-lncRNA prognostic model of CRC was constructed by bioinformatics analysis. The model had moderate prediction accuracy. LncRNA BBOX1-AS1 and lncRNA FOXP4-AS1 were identified as prognostic biomarkers.
Collapse
Affiliation(s)
- Zhi-Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Guo-Qiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Jian Guo
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xiao-Ling Yang
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng Yu
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng-Long Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xin-Guo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Address correspondence to: Xin-Guo Zhu; Department of General Surgery, The First Affiliated Hospital of Soochow University; 188 Shizi Street, Gusu District, Suzhou City, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
7
|
Li Y, Niu C, Wang N, Huang X, Cao S, Cui S, Chen T, Huo X, Zhou R. The Role of m 6A Modification and m 6A Regulators in Esophageal Cancer. Cancers (Basel) 2022; 14:5139. [PMID: 36291923 PMCID: PMC9600289 DOI: 10.3390/cancers14205139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 03/19/2025] Open
Abstract
N6-methyladenosine (m6A) modification, the most prevalent RNA modification, is involved in all aspects of RNA metabolism, including RNA processing, nuclear export, stability, translation and degradation. Therefore, m6A modification can participate in various physiological functions, such as tissue development, heat shock response, DNA damage response, circadian clock control and even in carcinogenesis through regulating the expression or structure of the gene. The deposition, removal and recognition of m6A are carried out by methyltransferases, demethylases and m6A RNA binding proteins, respectively. Aberrant m6A modification and the dysregulation of m6A regulators play critical roles in the occurrence and development of various cancers. The pathogenesis of esophageal cancer (ESCA) remains unclear and the five-year survival rate of advanced ESCA patients is still dismal. Here, we systematically reviewed the recent studies of m6A modification and m6A regulators in ESCA and comprehensively analyzed the role and possible mechanism of m6A modification and m6A regulators in the occurrence, progression, remedy and prognosis of ESCA. Defining the effect of m6A modification and m6A regulators in ESCA might be helpful for determining the pathogenesis of ESCA and providing some ideas for an early diagnosis, individualized treatment and improved prognosis of ESCA patients.
Collapse
Affiliation(s)
- Yuekao Li
- Department of Computed Tomography, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Chaoxu Niu
- Department of Surgery, Shijiazhuang Ping’an Hospital, Shijiazhuang 050021, China
| | - Na Wang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xi Huang
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Shiru Cao
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Saijin Cui
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Tianyu Chen
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Xiangran Huo
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Rongmiao Zhou
- Hebei Provincial Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
8
|
Matsumoto T, Iizuka T, Nakamura M, Suzuki T, Yamamoto M, Ono M, Kagami K, Kasama H, Wakae K, Muramatsu M, Horike SI, Kyo S, Yamamoto Y, Mizumoto Y, Daikoku T, Fujiwara H. FOXP4 inhibits squamous differentiation of atypical cells in cervical intraepithelial neoplasia via an ELF3-dependent pathway. Cancer Sci 2022; 113:3376-3389. [PMID: 35838233 PMCID: PMC9530870 DOI: 10.1111/cas.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Although the human papillomavirus (HPV) vaccine is effective for preventing cervical cancers, this vaccine does not eliminate pre‐existing infections, and alternative strategies have been warranted. Here, we report that FOXP4 is a new target molecule for differentiation therapy of cervical intraepithelial neoplasia (CIN). An immunohistochemical study showed that FOXP4 was expressed in columnar epithelial, reserve, and immature squamous cells, but not in mature squamous cells of the normal uterine cervix. In contrast with normal mature squamous cells, FOXP4 was expressed in atypical squamous cells in CIN and squamous cell carcinoma lesions. The FOXP4‐positive areas significantly increased according to the CIN stages from CIN1 to CIN3. In monolayer cultures, downregulation of FOXP4 attenuated proliferation and induced squamous differentiation in CIN1‐derived HPV 16‐positive W12 cells via an ELF3‐dependent pathway. In organotypic raft cultures, FOXP4‐downregulated W12 cells showed mature squamous phenotypes of CIN lesions. In human keratinocyte‐derived HaCaT cells, FOXP4 downregulation also induced squamous differentiation via an ELF3‐dependent pathway. These findings suggest that downregulation of FOXP4 inhibits cell proliferation and promotes the differentiation of atypical cells in CIN lesions. Based on these results, we propose that FOXP4 is a novel target molecule for nonsurgical CIN treatment that inhibits CIN progression by inducing squamous differentiation.
Collapse
Affiliation(s)
- Takeo Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuma Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Megumi Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruki Kasama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yasuhiko Yamamoto
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
9
|
Ding Y, Duan H, Lin J, Zhang X. YY1 accelerates oral squamous cell carcinoma progression through long non-coding RNA Kcnq1ot1/microRNA-506-3p/SYPL1 axis. J Ovarian Res 2022; 15:77. [PMID: 35778739 PMCID: PMC9250217 DOI: 10.1186/s13048-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ying Yang1 (YY1) has already been discussed in oral squamous cell carcinoma (OSCC), but the knowledge about its mediation on long non-coding RNA KCNQ1 overlapping transcript 1/microRNA-506-3p/synaptophysin like 1 (Kcnq1ot/miR-506-3p/SYPL1) axis in OSCC is still in its infancy. Hence, this article aims to explain the mechanism of YY1/Kcnq1ot1/miR-506-3p/SYPL1 axis in OSCC development. METHODS YY1, Kcnq1ot1, miR-506-3p and SYPL1 expression levels were determined in OSCC tissues. The potential relation among YY1, Kcnq1ot1, miR-506-3p and SYPL1 was explored. Cell progression was observed to figure out the actions of depleted YY1, Kcnq1ot1 and SYPL1 and restored miR-506-3p in OSCC. OSCC tumorigenic ability in mice was examined. RESULTS Elevated YY1, Kcnq1ot1 and SYPL1 and reduced miR-506-3p were manifested in OSCC. YY1 promoted Kcnq1ot1 transcription and up-regulated Kcnq1ot1 expression, thereby promoting OSCC cell procession. Silencing Kcnq1ot1 or elevating miR-506-3p delayed OSCC cell progression and silencing Kcnq1ot1 impeded tumorigenic ability of OSCC cells in mice. YY1-mediated Kcnq1ot1 sponged miR-506-3p to target SYPL1. CONCLUSION YY1 promotes OSCC cell progression via up-regulating Kcnq1ot1 to sponge miR-506-3p to elevate SYPL1, guiding a novel way to treat OSCC.
Collapse
Affiliation(s)
- Yi Ding
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.,School of Life Sciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jian Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Luo X, Gao Q, Zhou T, Tang R, Zhao Y, Zhang Q, Wang N, Ye H, Chen X, Chen S, Tang W, Zhao D. FOXP4-AS1 Inhibits Papillary Thyroid Carcinoma Proliferation and Migration Through the AKT Signaling Pathway. Front Oncol 2022; 12:900836. [PMID: 35720005 PMCID: PMC9202991 DOI: 10.3389/fonc.2022.900836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid carcinoma, also known as PTC, is one of the commonest malignancies in the endocrine system. Long non-coding RNAs (lncRNAs) in PTC could maintain proliferative signaling, induce therapeutic resistance, activate invasion and migration, and sustain stem cell-like characteristics. In this paper, results showed that lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1) is downregulated in PTC tissues and cell lines. Patients in TCGA cohort with a higher FOXP4-AS1 expression showed a higher disease-free interval (DFI) rate, and the expression of FOXP4-AS1 is shown to be linked to the clinical stage, T stage, N stage, and extraglandular invasion condition of the TC patients. FOXP4-AS1 is localized in the cell cytoplasmic domain of PTC cells. Functionally, upregulated FOXP4-AS1 inhibited PTC cell proliferation, apoptosis, and migration, whereas it downregulated FOXP4-AS1-promoted progression of PTC. In vivo assay also confirmed the tumor inhibitory effect of FOXP4-AS1 in PTC growth. Mechanism analysis indicated that FOXP4-AS1 can play its functions by regulating the AKT signaling pathway, and AKT inhibitor treatment could attenuate the impact of FOXP4-AS1 on PTC progression. Furthermore, FOXP4-AS1 also negatively regulates the expression of its host gene FOXP4. Collectively, we showed that FOXP4-AS1 inhibited PTC progression although AKT signaling and FOXP4-AS1 plays a tumor-suppressor role in PTC tumorigenesis.
Collapse
Affiliation(s)
- Xue Luo
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qingjun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Tang
- Department of Thyroid and Breast Surgery, Bijie City First People's Hospital, Bijie, China
| | - Yu Zhao
- Department of Thyroid and Breast Surgery, Qian Xi Nan People's Hospital, Xingyi, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Minority Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanpeng Wang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinghong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Song Chen
- Department of Thyroid and Breast Surgery, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Wenli Tang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiwei Zhao
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, the Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
11
|
Zhang G, Wang Y, Han X, Lu T, Fu L, Jin H, Yang K, Cai H. FOXP4-AS1 May be a Potential Prognostic Biomarker in Human Cancers: A Meta-Analysis and Bioinformatics Analysis. Front Oncol 2022; 12:799265. [PMID: 35719909 PMCID: PMC9204280 DOI: 10.3389/fonc.2022.799265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Cancer is one of the leading causes of death worldwide. Early diagnosis can significantly lower cancer-related mortality. Studies have shown that the lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is aberrantly expressed in various solid tumors. A meta-analysis was performed to evaluate the correlation of FOXP4-AS1 with the prognosis of cancer patients and determine the clinical value of FOXP4-AS1 as a potential diagnostic marker. Methods Correlational studies from the Web of Science, Embase, OVID, Cochrane and PubMed databases were screened (up to April 1, 2021). Meta-analysis was performed using Stata SE12.0 software. Results Eleven original studies with 1,332 patients who were diagnosed with a solid cancer (nasopharyngeal carcinoma, hepatocellular carcinoma, colorectal cancer, gastric cancer, osteosarcoma, mantle cell lymphoma, prostate cancer, and pancreatic ductal adenocarcinoma) were included in the meta-analysis. High expression of FOXP4-AS1 was correlated with poor overall survival (OS) (HR = 1.77, 95% CI 1.29-2.44, P < 0.001) and shorter disease-free survival (DFS) (HR = 1.66, 95% CI 1.01-2.72, P = 0.044). Subgroup analysis based on sample size, follow-up time and Newcastle-Ottawa Scale (NOS) score revealed significant differences between FOXP4-AS1 levels and OS (P < 0.05). However, the expression level of FOXP4-AS1 was not significantly correlated with the OS of gastric cancer patients (P = 0.381). High expression of FOXP4-AS1 was predictive of a larger tumor size (OR = 3.82, 95% CI 2.3-6.3, P < 0.001). Conclusions Overexpression of FOXP4-AS1 correlates with poor prognosis of cancer patients, and is a potential prognostic biomarker and therapeutic target. Systematic Review Registration PROSPERO, identifier CRD42021245267.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yongfeng Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| | | | - Tingting Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| | - Haojie Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| |
Collapse
|
12
|
Lin S, Que Y, Que C, Li F, Deng M, Xu D. Exosome miR-3184-5p inhibits gastric cancer growth by targeting XBP1 to regulate the AKT, STAT3, and IRE1 signalling pathways. Asia Pac J Clin Oncol 2022; 19:e27-e38. [PMID: 35394683 DOI: 10.1111/ajco.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
MicroRNAs can regulate the transcription of protein-coding genes associated with the development and progression of cancer. In this study, we explored the potential diagnostic function of exosome miR-3184-5p in gastric cancer. This exosome was isolated from the blood samples of 150 patients with gastric cancer and 60 healthy participants. The mean particle size and concentration of serum exosome in the patients with gastric cancer were 104.6 nm (93.97-115.84) and 6.21e+009 particles/ml (5.15e+009-7.12e+009), respectively. miR-3184-5p expression was substantially downregulated in the patients with gastric cancer compared with that in the healthy participants. The gastric cancer cell line HGC-27 was cultured and transfected with the mimic and an inhibitor to overexpress and inhibit miR-3184-5p expression. miR-3184-5p strongly suppressed cell proliferation, migration, and invasion but induced cell apoptosis. Luciferase reporter assay revealed that XBP1 was the target of miR-3184-5p. miR-3184-5p substantially downregulated the expression of CD44, cyclin D1, MMP2, p65, p-AKT, and p-STAT3 but upregulated that of GRP78, IRE1, p-JNK, and CHOP. Moreover, miR-3184-5p cleaved caspase-12 and inhibited BCL-2 expression. These results suggested that the downregulation of miR-3184-5p in patients with gastric cancer might regulate the AKT, STAT3, and IRE1 pathways to promote the vitality of gastric cancer cells.
Collapse
Affiliation(s)
- Shuangming Lin
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Yonggu Que
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Changrong Que
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Fudi Li
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Maoqing Deng
- Department of laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| | - Dongbo Xu
- Department of Gastrointestinal and Anal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, P.R. China
| |
Collapse
|
13
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N T Aryee
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Branka Radic-Sarikas
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Li D, Li Z, YanFei W, Wang Y, Shi J, Liu C, Qu L, Deng S, Xiong D. LncRNA FOXP4-AS promotes the progression of non-small cell lung cancer by regulating the miR-3184-5p/EIF5A axis. J Tissue Eng Regen Med 2022; 16:335-345. [PMID: 34921595 PMCID: PMC9306595 DOI: 10.1002/term.3275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Long non coding RNA FOXP4-AS1 exerted crucial functions in various human cancers, while its role in non-small cell lung cancer (NSCLC) remains unclear. A total of 30 pairs of NSCLC tissues and matched adjacent normal tissues were used to evaluate the expression of FOXP4-AS1 and miR-3184-5p. Cell proliferation was assessed by CCK-8 assay and colony formation assay. Cell apoptosis was measured by flow cytometry. Bioinformatic analysis and luciferase reporter assay were performed to determine the regulatory relationship among FOXP4-AS1, miR-3184-5p and EIF5A. The xenograft tumor model was constructed to confirm the function of FOXP4-AS1 in NSCLC progression. The results showed that FOXP4-AS1 was upregulated and miR-3184-5p was downregulated in NSCLC tissues and cell lines. Downregulation of FOXP4-AS1 significantly reduced cell proliferation and induced apoptosis of NSCLC cells in vitro. FOXP4-AS1 could regulated the expression of EIF5A by binding to miR-3184-5p. Rescue experiments showed that downregulation of miR-3184-5p or overexpression of EIF5A obviously attenuated the inhibitory effects of si-FOXP4-AS1 on cell proliferation, as well as the stimulating effects on cell apoptosis. Moreover, knockdown of FOXP4-AS1 could efficiently inhibited tumor development of NSCLC in vivo. Downregulation of FOXP4-AS1 attenuated the progression of NSCLC by regulating miR-3184-5p and EIF5A.
Collapse
Affiliation(s)
- Dingbiao Li
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
- Yunnan Provincial Key Laboratory of Cancer Immune Prevention and ControlKunming CityChina
| | - Zhenhua Li
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
- Yunnan Provincial Key Laboratory of Cancer Immune Prevention and ControlKunming CityChina
| | - Wang YanFei
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Ying Wang
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Jianlin Shi
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Chang Liu
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Laihao Qu
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Shoujun Deng
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| | - Dalin Xiong
- Department of Thoracic SurgeryKunming Yan'an HospitalKunming CityChina
| |
Collapse
|
15
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
16
|
Cheng Z, Jiang S, Tao R, Ge H, Qin J. Activating transcription factor 3-activated long noncoding RNA forkhead box P4-antisense RNA 1 aggravates colorectal cancer progression by regulating microRNA-423-5p/nucleus accumbens associated 1 axis. Bioengineered 2022; 13:2114-2129. [PMID: 35034547 PMCID: PMC8973600 DOI: 10.1080/21655979.2021.2023798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have vital roles in the progression of colorectal cancer (CRC). Forkhead box P4-antisense RNA 1 (FOXP4-AS1) showed a potential unfavorable prognostic factor for CRC, while its underlying mechanism remains elusive. Thus, the goal of this research is to determine mechanism of FOXP4-AS1 in CRC occurrence and development. Herein, a Dual-luciferase reporter assay was performed to assess the regulation of miR-423-5p to nucleus accumbens-associated protein 1 (NACC1) and activating transcription factor 3 (ATF3) to FOXP4-AS1 promoter. Hematoxylin-eosin (H&E) staining was performed to detect the pathological changes of tumor tissues. Flow cytometry, cell counting kit 8, Transwell, and wound healing assays were conducted to assess apoptosis, proliferation, migration, and invasion of CRC cells, respectively. The results showed that FOXP4-AS1 was highly expressed in CRC cell lines and tissues. CRC progression was promoted by the overexpression of FOXP4-AS1 in HTC116 cells and animal models. Furthermore, FOXP4-AS1 served as a molecular sponge for miR-423-5p, and NACC1 is a direct target of miR-423-5p. MiR-423-5p silencing or overexpression of NACC1 increased proliferation, migration, and invasion of HCT116 cells while suppressing apoptosis. We also found that the upregulation of FOXP4-AS1 was activated by ATF3 in CRC cells. Collectively, our results demonstrated that ATF3-activated FOXP4-AS1 aggravates CRC progression by regulating miR-423-5p/NACC1 axis, indicating a new target for CRC treatment.
Collapse
Affiliation(s)
- Zhouyang Cheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Song Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Haipeng Ge
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, JS, China
| |
Collapse
|
17
|
Identification of Unique Key miRNAs, TFs, and mRNAs in Virulent MTB Infection Macrophages by Network Analysis. Int J Mol Sci 2021; 23:ijms23010382. [PMID: 35008808 PMCID: PMC8745702 DOI: 10.3390/ijms23010382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Although Mycobacterium tuberculosis (MTB) has existed for thousands of years, its immune escape mechanism remains obscure. Increasing evidence signifies that microRNAs (miRNAs) play pivotal roles in the progression of tuberculosis (TB). RNA sequencing was used to sequence miRNAs in human acute monocytic leukemia cells (THP-1) infected by the virulent MTB-1458 strain and the avirulent vaccine strain Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Sets of differentially expressed miRNAs (DE-miRNAs) between MTB-1458/BCG-infected groups and uninfected groups were identified, among which 18 were differentially expressed only in the MTB-1458-infected THP-1 group. Then, 13 transcription factors (TFs) and 81 target genes of these 18 DE-miRNAs were matched. Gene Ontology classification as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the candidate targets were predominantly involved in apoptotic-associated and interferon-γ-mediated signaling pathways. A TF-miRNA-mRNA interaction network was constructed to analyze the relationships among these 18 DE-miRNAs and their targets and TFs, as well as display the hub miRNAs, TFs, and target genes. Considering the degrees from network analysis and the reported functions, this study focused on the BHLHE40-miR-378d-BHLHE40 regulation axis and confirmed that BHLHE40 was a target of miR-378d. This cross-talk among DE-miRNAs, mRNAs, and TFs might be an important feature in TB, and the findings merited further study and provided new insights into immune defense and evasion underlying host-pathogen interactions.
Collapse
|
18
|
Xiong J, Wu L, Huang L, Wu C, Liu Z, Deng W, Ma S, Zhou Z, Yu H, Cao K. LncRNA FOXP4-AS1 Promotes Progression of Ewing Sarcoma and Is Associated With Immune Infiltrates. Front Oncol 2021; 11:718876. [PMID: 34765540 PMCID: PMC8577041 DOI: 10.3389/fonc.2021.718876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Ewing sarcoma (ES) is a highly malignant primary bone tumor with poor prognosis. Studies have shown that abnormal expression of lncRNA influences the prognosis of tumor patients. Herein, we established that FOXP4-AS1 was up-regulated in ES and this correlated with poor prognosis. Further analysis illustrated that FOXP4-AS1 down-regulation repression growth, migration, along with invasion of ES. On the contrary, up-regulation of FOXP4-AS1 promoted the growth, migration, as well as invasion of ES. To explore the mechanism of FOXP4-AS1, Spearman correlation analysis was carried out to determine genes that were remarkably linked to FOXP4-AS1 expression. The potential functions and pathways involving FOXP4-AS1 were identified by GO analysis, Hallmark gene set enrichment analysis, GSEA, and GSVA. The subcellular fractionation results illustrated that FOXP4-AS1 was primarily located in the cytoplasm of ES cells. Then a ceRNA network of FOXP4-AS1 was constructed. Analysis of the ceRNA network and GSEA yielded two candidate mRNAs for FOXP4-AS1. Results of the combined survival analysis led us to speculate that FOXP4-AS1 may affect the expression of TMPO by sponging miR-298, thereby regulating the malignant phenotype of ES. Finally, we found that FOXP4-AS1 may modulates the tumor immune microenvironment in an extracellular vesicle-mediated manner. In summary, FOXP4-AS1 correlates with poor prognosis of ES. It promotes the growth, migration, as well as invasion of ES cells and may modulate the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jiachao Xiong
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Huang
- Child Health Department of the Maternal and Children Health Hospital of Jiangxi Province, Nanchang, China
| | - Chunyang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiming Liu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqiang Deng
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengbiao Ma
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhai Zhou
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honggui Yu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Cao
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Liao C, Wang A, Ma Y, Liu H. Long non-coding RNA FOXP4-AS1 is a prognostic biomarker and associated with immune infiltrates in ovarian serous cystadenocarcinoma. Medicine (Baltimore) 2021; 100:e27473. [PMID: 34622876 PMCID: PMC8500601 DOI: 10.1097/md.0000000000027473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND FOXP4-AS1 expression participates in multiple signal pathways and has been previously reported in colorectal cancer, cervical cancer, and other cancer cells. However, its role on prognosis and immune infiltrates in ovarian serous cystadenocarcinoma (OVs) remains unclear. The purpose of our study was to investigate the expression of FOXP4-AS1 in OVs and its association with immune infiltrates, and determined its prognostic roles in OVs. METHODS Using The Cancer Genome Atlas (TCGA) database, we retrieved FOXP4-AS1 expression and clinical information for 376 patients with OVs. Wilcoxon rank sum test was used to compare the expression of FOXP4-AS1 in OVs and normal ovarian tissue. Logistic regression was used to analyze the relationship between clinicopathologic features and FOXP4-AS1. Gene Set Enrichment Analysis (GSEA), and single sample Gene Set Enrichment Analysis (ssGSEA) was conducted to investigate the enrich pathways and functions and quantify the extent of immune cells infiltration for FOXP4-AS1. Kaplan-Meier method was used to generate survival curves, and Cox regression was used to analyze the relationship between FOXP4-AS1 and survival rate. RESULTS High FOXP4-AS1 expression was significantly correlated with tumor FIGO stage (P = .026). Multivariate survival analysis showed that FOXP4-AS1was an independent prognostic marker for overall survival (OS; hazard ratio [HR]: 0.638; 95% confidence interval [CI]:0.467-0.871; P = .001) and disease-specific survival (DSS; HR: 0.649; CI: 0.476-0.885; P = .006). GSEA showed that High FOXP4-AS1 expression may active programmed cell death 1 (PD-1) signaling, the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) pathway, the B cell receptor signaling pathway, apoptosis, fibroblast growth factor receptor (FGFR) signaling, and the Janus-activated kinase signal transducers and activators of transcription (JAK-STAT) signaling pathway. FOXP4-AS1 expression was negatively correlated with markers of immune cells, including aDC, cytotoxic cells and neutrophils. CONCLUSION High FOXP4-AS1 expression has the potential to be a prognostic molecular marker of favorable survival in OVs.
Collapse
Affiliation(s)
- Cheng Liao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P. R. China
| | - Ao Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P. R. China
| | - Yushan Ma
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P. R. China
| | - Hui Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, P. R. China
| |
Collapse
|
20
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
21
|
Yin Y, Zhang J, Yu H, Liu M, Zheng X, Zhou R. Effect of lncRNA-ATB/miR-651-3p/Yin Yang 1 pathway on trophoblast-endothelial cell interaction networks. J Cell Mol Med 2021; 25:5391-5403. [PMID: 33942988 PMCID: PMC8184718 DOI: 10.1111/jcmm.16550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Our previous studies have confirmed that lncRNA‐ATB may be involved in the pathogenesis of preeclampsia, however, it is uncertain whether lncRNA‐ATB influence the interaction between trophoblast and endothelial cells, which is crucial to the uterine spiral artery remodelling. Scratch wound healing and transwell invasion assay were conducted to test the migration and invasion of trophoblast cells. Co‐culture model was used to simulate the physiological environment in vivo. The expression levels of lncRNA‐ATB were analyzed in placenta tissues from healthy pregnant women and preeclampsia patients. Subsequently, the binding site of lncRNA‐ATB and miR‐651‐3p was verified using dual‐luciferase reporter assay, and the rescue experiment was used to study the effects of these two on the biological function. The direct effects of miR‐651‐3p and Yin Yang 1 (YY1) were verified using similar methods. LncRNA‐ATB was found to be down‐regulated in the placenta of preeclampsia patients. LncRNA‐ATB knockdown decreased trophoblast migration, invasion and colocalisation with human umbilical vein endothelial cells. MiR‐651‐3p was a direct target of lncRNA‐ATB and they had opposite effects. Moreover, the expression of lncRNA‐ATB and miR‐651‐3p in placental tissues was negatively correlated. MiR‐651‐3p has been confirmed to directly target the 3′ untranslated region of YY1. The inhibitory effects of YY1 low expression on biological function was rescued by miR‐651‐3p depletion. Western blot analysis showed that lncRNA‐ATB could regulate YY1 expression by sponging miR‐651‐3p. LncRNA‐ATB functioned as a competitive endogenous RNA of miR‐651‐3p to regulate YY1 on progress of spiral artery remodelling.
Collapse
Affiliation(s)
- Yangxue Yin
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiashuo Zhang
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongbiao Yu
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Zheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
FOXP4-AS1 is a favorable prognostic-related enhancer RNA in ovarian cancer. Biosci Rep 2021; 41:228414. [PMID: 33870423 PMCID: PMC8150160 DOI: 10.1042/bsr20204008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OV) is the main cause of deaths worldwide in female reproductive system malignancies. Enhancer RNAs (eRNAs) are derived from the transcription of enhancers and has attracted increasing attention in cancers recently. However, the biological functions and clinical significance of eRNAs in OV have not been well described presently. We used an integrated data analysis to identify prognostic-related eRNAs in OV. Tissue-specific enhancer-derived RNAs and their regulating genes were considered as putative eRNA–target pairs using the computational pipeline PreSTIGE. Gene expression profiles and clinical data of OV and 32 other cancer types were obtained from the UCSC Xena platform. Altogether, 71 eRNAs candidates showed significant correlation with overall survival (OS) of OV samples (Kaplan–Meier log-rank test, P<0.05). Among which, 23 were determined to be correlated with their potential target genes (Spearman’s r > 0.3, P<0.001). It was found that among the 23 prognostic-related eRNAs, the expression of forkhead box P4 antisense RNA 1 (FOXP4-AS1) had the highest positive correlation with its predicted target gene FOXP4 (Spearman’s r = 0.61). Moreover, the results were further validated by RT-qPCR analysis in an independent OV cohort. Our results suggested the eRNA FOXP4-AS1 expression index may be a favorable independent prognostic biomarker candidate in OV.
Collapse
|
23
|
Long Noncoding RNA FOXP4-AS1 Predicts Unfavourable Prognosis and Regulates Proliferation and Invasion in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8850656. [PMID: 33604387 PMCID: PMC7870313 DOI: 10.1155/2021/8850656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 01/30/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer that has a high level of morbidity and mortality. Long noncoding RNA (lncRNA) is a novel regulatory factor of tumour proliferation, apoptosis, and metastasis. Our previous studies indicated that lncRNA FOXP4-AS1 is a functional oncogene in HCC; thus, this study is aimed at further evaluating the clinical and biological function of FOXP4-AS1 in HCC. Material and Methods. First, we detected the expression of FOXP4-AS1 in HCC tissues and paracarcinoma normal tissues by qRT-PCR. Second, the prognostic effects of FOXP4-AS1 in patients with HCC were analysed in a training group and a verification group. Subsequently, to investigate the biological effects of FOXP4-AS1 on HCC cells, downexpression tests were further conducted. Results The expression of FOXP4-AS1 was higher in HCC tissues than adjacent nontumourous tissues, whereas the low expression of FOXP4-AS1 was correlated with optimistic treatment outcomes, which suggested that FOXP4-AS1 may be an independent prognostic biomarker for HCC. Moreover, the downregulation of FOXP4-AS1 significantly reduced the cell proliferation and clonal abilities and inhibited the invasion, migration, and angiogenesis of hepatoma cells (P < 0.05). Conclusion These results revealed the clinical significance and biological function of FOXP4-AS1 in HCC development, which may provide a new direction for finding therapeutic targets and potential prognostic biomarkers of HCC.
Collapse
|
24
|
Tao HF, Shen JX, Hou ZW, Chen SY, Su YZ, Fang JL. lncRNA FOXP4‑AS1 predicts poor prognosis and accelerates the progression of mantle cell lymphoma through the miR‑423‑5p/NACC1 pathway. Oncol Rep 2021; 45:469-480. [PMID: 33416160 PMCID: PMC7757101 DOI: 10.3892/or.2020.7897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Long non‑coding RNA (lncRNA) forkhead box P4 antisense RNA 1 (FOXP4‑AS1) has been determined to function as an oncogene in various types of cancer. However, the biological function and the underlying mechanisms of FOXP4‑AS1 in mantle cell lymphoma (MCL) remain to be uncovered. The expression and the associated clinicopathological characteristics and prognostic significance of FOXP4‑AS1 were explored in MCL clinical samples. The effects of FOXP4‑AS1 on MCL cellular behaviors, including proliferation, migration and invasion were analyzed using CCK‑8, crystal violet and Transwell assays. The downstream molecules of FOXP4‑AS1 were explored using bioinformatics analysis and dual luciferase assay. Our results showed that FOXP4‑AS1 expression was upregulated in MCL patients, and that the high expression of FOXP4‑AS1 was correlated with the unfavorable prognosis of patients. Functionally, while FOXP4‑AS1 downregulation inhibited proliferation, migration and invasion of MCL cells, FOXP4‑AS1 overexpression had promotive effects on these cellular processes. Mechanistically, FOXP4‑AS1 was found to act as a competing endogenous (ce)RNA for miR‑423‑5p to regulate the expression of nucleus accumbens‑associated 1 (NACC1). The negative regulation of FOXP4‑AS1 on miR‑423‑5p compared to that of miR‑423‑5p on NACC1 was determined at the mRNA or protein levels in MCL cells. Moreover, an inverse expression correlation between FOXP4‑AS1 and miR‑423‑5p, and that between miR‑423‑5p and NACC1 was confirmed in MCL clinical samples. In addition, rescue assay showed that miR‑423‑5p upregulation or NACC1 knockdown abolished the promoting effects of FOXP4‑AS1 on MCL cell proliferation, migration and invasion. In conclusion, FOXP4‑AS1 promotes MCL progression through the upregulation of NACC1 expression by inhibiting miR‑423‑5p. FOXP4‑AS1 may serve as a novel therapeutic target for patients with MCL.
Collapse
Affiliation(s)
- Hong-Fang Tao
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jia-Xin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhan-Wen Hou
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shao-Yan Chen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yong-Zhong Su
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jian-Lin Fang
- Department of Intervention Therapy, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Jian-Lin Fang, Department of Intervention Therapy, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Jinping, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
25
|
Yao L, Wang T, Wang X. LncRNA FOXP4-AS1 serves as a biomarker for nasopharyngeal carcinoma diagnosis and prognosis. 3 Biotech 2021; 11:25. [PMID: 33442523 DOI: 10.1007/s13205-020-02593-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
This study was performed to probe the clinical significance of serum lncRNA FOXP4-AS1 in nasopharyngeal carcinoma (NPC) tumorigenesis. LncRNA FOXP4-AS1 from nasopharyngeal carcinoma patients and healthy volunteers were abstracted and converged. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of FOXP4-AS1. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of FOXP4-AS1. Kaplan-Meier survival analysis and log-rank test were used to assess the patients' survival prognosis. Independent risk factors for overall survival (OS) and progression-free survival (PFS) were assessed by univariate and multivariate cox proportional hazards regression analysis. In this study, we observed that the levels of FOXP4-AS1 were significantly upregulated in nasopharyngeal carcinoma patients compared to healthy volunteers. Besides, the expression of FOXP4-AS1 was closely associated with T stage, lymph node metastasis, and clinical stage. Meanwhile, ROC analysis found that FOXP4-AS1 had diagnostic values to distinguish tumor patients from healthy volunteers. Furthermore, patients with high FOXP4-AS1 expression level had poorer OS and PFS than those with low FOXP4-AS1 expression. Finally, univariate and multivariate Cox proportional hazards regression analysis found that the T stage, lymph node metastasis, clinical stage, FOXP4-AS1 expression might be independent risk factors for OS and PFS of nasopharyngeal carcinoma patients. This study firstly clarified that FOXP4-AS1 was overexpressed in nasopharyngeal carcinoma. And FOXP4-AS1 may act as a diagnostic and prognostic biomarker, and hopeful therapeutic target for nasopharyngeal carcinoma patients.
Collapse
|