1
|
Ganesan IP, Kiyokawa H. A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins. Cancers (Basel) 2025; 17:626. [PMID: 40002221 PMCID: PMC11853300 DOI: 10.3390/cancers17040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The loss of functions of tumor suppressor (TS) genes plays a key role in not only tumor initiation but also tumor progression leading to poor prognosis. While therapeutic inhibition of oncogene-encoded kinases has shown clinical success, restoring TS functions remains challenging due to conceptual and technical limitations. E3 ubiquitin ligases that ubiquitinate TS proteins for accelerated degradation in cancers emerge as promising therapeutic targets. Unlike proteasomal inhibitors with a broad spectrum, inhibitors of an E3 ligase would offer superior selectivity and efficacy in enhancing expression of its substrate TS proteins as far as the TS proteins retain wild-type structures. Recent advances in developing E3 inhibitors, including MDM2 inhibitors, highlight their potential and ultimately guide the framework to establish E3 inhibition as effective strategies to treat specific types of cancers. This review explores E3 ligases that negatively regulate bona fide TS proteins, the developmental status of E3 inhibitors, and their promise and pitfalls as therapeutic agents for anti-cancer precision medicine.
Collapse
Affiliation(s)
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
2
|
Eberhardt W, Nasrullah U, Pfeilschifter J. TRIM25: A Global Player of Cell Death Pathways and Promising Target of Tumor-Sensitizing Therapies. Cells 2025; 14:65. [PMID: 39851496 PMCID: PMC11764315 DOI: 10.3390/cells14020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g., acquired by random mutations, cancer cells typically escape from certain treatments ("acquired resistance") by a large variety of means, including suppression of apoptosis and other cell death pathways via upregulation of anti-apoptotic factors or through inhibition of tumor-suppressive proteins. Therefore, ideally, the tumor-cell-restricted induction of apoptosis is still considered a promising avenue for the development of novel, tumor (re)sensitizing therapies. A growing body of evidence has highlighted the multifaceted role of tripartite motif 25 (TRIM25) in controlling different aspects of tumorigenesis, including chemotherapeutic drug resistance. Accordingly, overexpression of TRIM25 is observed in many tumors and frequently correlates with a poor patient survival. In addition to its originally described function in antiviral innate immune response, TRIM25 can play critical yet context-dependent roles in apoptotic- and non-apoptotic-regulated cell death pathways, including pyroposis, necroptosis, ferroptosis, and autophagy. The review summarizes current knowledge of molecular mechanisms by which TRIM25 can interfere with different cell death modalities and thereby affect the success of currently used chemotherapeutics. A better understanding of the complex repertoire of cell death modulatory effects by TRIM25 is an essential prerequisite for validating TRIM25 as a potential target for future anticancer therapy to surmount the high failure rate of currently used chemotherapies.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, 60590 Frankfurt, Germany; (U.N.); (J.P.)
| | | | | |
Collapse
|
3
|
Chiang DC, Yap BK. TRIM25, TRIM28 and TRIM59 and Their Protein Partners in Cancer Signaling Crosstalk: Potential Novel Therapeutic Targets for Cancer. Curr Issues Mol Biol 2024; 46:10745-10761. [PMID: 39451518 PMCID: PMC11506413 DOI: 10.3390/cimb46100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Aberrant expression of TRIM proteins has been correlated with poor prognosis and metastasis in many cancers, with many TRIM proteins acting as key oncogenic factors. TRIM proteins are actively involved in many cancer signaling pathways, such as p53, Akt, NF-κB, MAPK, TGFβ, JAK/STAT, AMPK and Wnt/β-catenin. Therefore, this review attempts to summarize how three of the most studied TRIMs in recent years (i.e., TRIM25, TRIM28 and TRIM59) are involved directly and indirectly in the crosstalk between the signaling pathways. A brief overview of the key signaling pathways involved and their general cross talking is discussed. In addition, the direct interacting protein partners of these TRIM proteins are also highlighted in this review to give a picture of the potential protein-protein interaction that can be targeted for future discovery and for the development of novel therapeutics against cancer. This includes some examples of protein partners which have been proposed to be master switches to various cancer signaling pathways.
Collapse
Affiliation(s)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
| |
Collapse
|
4
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
6
|
Rahimi-Tesiye M, Zaersabet M, Salehiyeh S, Jafari SZ. The role of TRIM25 in the occurrence and development of cancers and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2023; 1878:188954. [PMID: 37437700 DOI: 10.1016/j.bbcan.2023.188954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The tripartite motif (TRIM) family proteins are a group of proteins involved in different signaling pathways. The changes in the expression regulation, function, and signaling of this protein family are associated with the occurrence and progression of a wide range of disorders. Given the importance of these proteins in pathogenesis, they can be considered as potential therapeutic targets for many diseases. TRIM25, as an E3-ubiquitin ligase, is involved in the development of various diseases and cellular mechanisms, including antiviral innate immunity and cell proliferation. The clinical studies conducted on restricting the function of this protein have reached promising results that can be further evaluated in the future. Here, we review the regulation of TRIM25 and its function in different diseases and signaling pathways, especially the retinoic acid-inducible gene-I (RIG-I) signaling which prompts many kinds of cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mona Zaersabet
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Sajad Salehiyeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Zahra Jafari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Ran H, Li C, Zhang M, Zhong J, Wang H. Neglected PTM in Animal Adipogenesis: E3-mediated Ubiquitination. Gene 2023:147574. [PMID: 37336271 DOI: 10.1016/j.gene.2023.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Ubiquitination is a widespread post-transcriptional modification (PTM) that occurs during protein degradation in eukaryotes and participates in almost all physiological and pathological processes, including animal adipogenesis. Ubiquitination is a cascade reaction regulated by the activating enzyme E1, conjugating enzyme E2, and ligase E3. Several recent studies have reported that E3 ligases play important regulatory roles in adipogenesis. However, as a key influencing factor for the recognition and connection between the substrate and ubiquitin during ubiquitination, its regulatory role in adipogenesis has not received adequate attention. In this review, we summarize the E3s' regulation and modification targets in animal adipogenesis, explain the regulatory mechanisms in lipogenic-related pathways, and further analyze the existing positive results to provide research directions of guiding significance for further studies on the regulatory mechanisms of E3s in animal adipogenesis.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
8
|
Small Nucleolar RNA and C/D Box 15B Regulate the TRIM25/P53 Complex to Promote the Development of Endometrial Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7762708. [PMID: 36199797 PMCID: PMC9529403 DOI: 10.1155/2022/7762708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Background Endometrial cancer is associated with a high mortality rate, which warrants the identification of novel diagnostic markers and therapeutic targets. The aim of this study is to evaluate the role of SNORD15B in the development of endometrial cancer and explore the potential underlying mechanisms. Methods Bioinformatics was used to analyze the expression level and prognostic relevance of SNORD15B in endometrial cancer. The Ishikawa and HEC-1B cells were respectively transfected with SNORD15B expression plasmid and an antisense oligonucleotide, or the corresponding empty vector and a nonspecific sequence. The malignant phenotype of the suitably transfected cells was assessed by standard in vitro functional assays and the establishment of in vivo xenografts. The expression levels of the specific markers were analyzed with RT-qPCR and western blotting. The subcellular localization of P53 was determined by analyzing the nuclear and cytoplasmic fractions. RIP, Co-IP, and immunohistochemistry were performed as per standard protocols. Results SNORD15B was overexpressed in the endometrial cancer tissues and correlated to a poor prognosis. Ectopic expression of SNORD15B in Ishikawa cells inhibited apoptosis, increased the proliferation, invasion, and migration in vitro, and enhanced their tumorigenicity in vivo. SNORD15B overexpression also upregulated TRIM25 and accelerated P53 accumulation in the cytoplasm of the endometrial cancer cells. Conclusion SNORD15B functions as an oncogene in endometrial cancer by targeting the TRIM25/P53 complex and blocking the nuclear translocation of P53.
Collapse
|
9
|
Zhao J, Lin E, Cai C, Zhang M, Li D, Cai S, Zeng G, Yin Z, Wang B, Li P, Hong X, Chen J, Zou B, Li J. Combined Treatment of Tanshinone I and Epirubicin Revealed Enhanced Inhibition of Hepatocellular Carcinoma by Targeting PI3K/AKT/HIF-1α. Drug Des Devel Ther 2022; 16:3197-3213. [PMID: 36158238 PMCID: PMC9507289 DOI: 10.2147/dddt.s360691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
Background Epirubicin (EADM) is a common chemotherapeutic agent in hepatocellular carcinoma (HCC). The accumulation of hypoxia-inducible factor-1α (HIF-1α) is an important cause of drug resistance to EADM in HCC. Tanshinone I (Tan I) is an agent with promising anti-cancer effects alone or with other drugs. Some tanshinones mediate HIF-1α regulation via PI3K/AKT. However, the role of Tan I combined with EADM to reduce the resistance of HCC to EADM has not been investigated. Therefore, this study aimed to investigate the combined use of Tan I and EADM in HCC and the underlying mechanism of PI3K/AKT/HIF-1α. Methods HCC cells were treated with Tan I, EADM, or the combined treatment for 48 hrs. Cell transfection was used to construct HIF-1α overexpression HCC stable cells. Cell viability, colony formation, and flow cytometric assays were used to detect the viability, proliferation, and apoptosis in HCC cells. Synergism between Tan I and EADM were tested by calculating the Bliss synergy score, positive excess over bliss additivism (EOBA), and the combination index (CI). Western blotting analyses were used to detect the levels of β-actin, HIF-1α, PI3K p110α, p-Akt Thr308, Cleaved Caspase-3, and Cleaved Caspase-9. Toxicity parameters were used to evaluate the safety of the combination in mice. The xenograft model of mice was built by HCC stable cell lines, which was administrated with Tan I, EADM, or a combination of them for 8 weeks. Immunohistochemistry staining (IHC) was used to assess tumor apoptosis in mouse models. Results Hypoxia could upregulate HIF-1α to induce drug resistance in HCC cancer cells. The combination of Tan I and EADM was synergistic. Although Tan I or EADM alone could inhibit HCC cancer cells, the combination of them could further enhance the cytotoxicity and growth inhibition by targeting the PI3K/AKT/HIF-1α signaling pathway. Furthermore, Tan I and EADM synergistically reversed HIF-1α-mediated drug resistance to inhibit HCC. The results of toxicity parameters showed that the combination was safe in mice. Meanwhile, animal models showed that Tan I not only improved the anti-tumor effect of EADM, but also reduced the drug reactions of EADM-induced weight loss. Conclusion Our results suggested that Tan I could effectively improve the anti-tumor effect of EADM, and synergize EADM to reverse HIF-1α mediated resistance via targeting PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Manyao Zhang
- Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Decheng Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Zeren Yin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xiaopeng Hong
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China,Correspondence: Jian Li; Baojia Zou, Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China, Tel +86-756-252-8781, Fax +86-756-252-8166, Email ;
| |
Collapse
|
10
|
Lu K, Pan Y, Huang Z, Liang H, Ding ZY, Zhang B. TRIM proteins in hepatocellular carcinoma. J Biomed Sci 2022; 29:69. [PMID: 36100865 PMCID: PMC9469581 DOI: 10.1186/s12929-022-00854-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) protein family is a highly conserved group of E3 ligases with 77 members known in the human, most of which consist of a RING-finger domain, one or two B-box domains, and a coiled-coil domain. Generally, TRIM proteins function as E3 ligases to facilitate specific proteasomal degradation of target proteins. In addition, E3 ligase independent functions of TRIM protein were also reported. In hepatocellular carcinoma, expressions of TRIM proteins are both regulated by genetic and epigenetic mechanisms. TRIM proteins regulate multiple biological activities and signaling cascades. And TRIM proteins influence hallmarks of HCC. This review systematically demonstrates the versatile roles of TRIM proteins in HCC and helps us better understand the molecular mechanism of the development and progression of HCC.
Collapse
Affiliation(s)
- Kan Lu
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Yonglong Pan
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Zhao Huang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Ge MX, Shi YK, Liu D. Tripartite motif-containing 25 facilitates immunosuppression and inhibits apoptosis of glioma via activating NF-κB. Exp Biol Med (Maywood) 2022; 247:1529-1541. [PMID: 35723030 PMCID: PMC9554170 DOI: 10.1177/15353702221099460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a crucial tumor type of the central nervous system, gliomas are characterized by a dismal prognosis. Tripartite motif-containing 25 (TRIM25), an essential E3 ubiquitin ligase, participates in various biological processes. This study sought to demonstrate its functional role in gliomas. Data obtained from publicly available databases - including The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and the Repository for Molecular Brain Neoplasia Data (REMBRANDT) - were employed. TRIM25 expression pattern and its association with different clinical characteristics were analyzed. Kaplan-Meier analysis was utilized to compare different TRIM25 expressions with glioma patients' survival. Subsequently, we performed bioinformatic analyses to investigate the biological functions of TRIM25, which were further validated by in vitro experiments, CIBERSORT algorithm, and ESTIMATE evaluation. TRIM25 expression was upregulated in glioma patients and can predict an unfavorable prognosis. Bioinformatic results indicated the involvement of TRIM25 in apoptosis and immune regulation. TRIM25 was associated with programmed death-ligand 1 (PD-L1) related and macrophage-induced immune suppression in gliomas. Meanwhile, silencing TRIM25 promoted apoptosis in glioma cells, which is attributed to its regulation of NF-κB. Therefore, TRIM25 contributed to the glioma malignant progression and suppressive immune microenvironments via NF-κB activation, which may play a therapeutic role in gliomas.
Collapse
Affiliation(s)
- Mao-xu Ge
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-kang Shi
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Dong Liu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China,College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China,Dong Liu.
| |
Collapse
|
12
|
Wu L, Yin X, Jiang K, Yin J, Yu H, Yang L, Ma C, Yan S. Comprehensive profiling of the TRIpartite motif family to identify pivot genes in hepatocellular carcinoma. Cancer Med 2022; 11:1712-1731. [PMID: 35142083 PMCID: PMC8986146 DOI: 10.1002/cam4.4552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION TRIpartite motif (TRIM) proteins are important members of the Really Interesting New Gene-finger-containing E3 ubiquitin-conjugating enzyme and are involved in the progression of hepatocellular carcinoma (HCC). However, the diverse expression patterns of TRIMs and their roles in prognosis and immune infiltrates in HCC have yet to be analyzed. MATERIALS Combined with previous research, we used an Oncomine database and the Human Protein Atlas to compare TRIM family genes' transcriptional levels between tumor samples and normal liver tissues, as verified by the Gene Expression Profiling Interactive Analysis database. We investigated the patient survival data of TRIMs from the Kaplan-Meier plotter database. Clinicopathologic characteristics associations and potential diagnostic and prognostic values were validated with clinical and expressional data collected from the cancer genome atlas. RESULTS We identified TRIM28, TRIM37, TRIM45, and TRIM59 as high-priority members of the TRIMs family that modulates HCC. Low expression of TRIM28 was associated with shorter overall survival (OS) than high expression (log-rank p = 0.009). The same trend was identified for TRIM37 (p = 0.001), TRIM45 (p = 0.013), and TRIM59 (p = 0.011). Multivariate analysis indicated that the level of TRIM37 was a significant independent prognostic factor for both OS (p = 0.043) and progression-free interval (p = 0.044). We performed expression and mutation analysis and functional pathways and tumor immune infiltration analysis of the changes in TRIM factors. CONCLUSION These data suggested that TRIM28, TRIM37, TRIM45, and TRIM59 could serve as efficient prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Yu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyuan Ma
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
14
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|