1
|
Yang D, Kang JS, Zhong H, Liu HM, Nian S, Qing KX. IRF1 regulates autophagy and microglia polarization in retinal ischemia-reperfusion through NCOA1/Wnt/β-catenin signalling pathway. Cell Signal 2025; 131:111746. [PMID: 40096931 DOI: 10.1016/j.cellsig.2025.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Interferon regulatory factor 1 (IRF1) is an important regulatory factor in the development of eyes, and it has been proved to be involved in the regulation of ischemia-reperfusion process. But its role in retinal ischemia-reperfusion (RIR) remains unclear. METHODS RIR rat model was induced by increasing intraocular pressure. Hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and western blot experiments were used to explore the levels of IRF1, autophagy, and microglia polarization in RIR. Western blot, transmission electron microscope, IF, and ELISA assays were used to explore the effects of IRF1, Nuclear receptor coactivator 1 (NCOA1), and Wnt/β-catenin signalling pathways in OGD/R-induced autophagy and polarization of rat retinal microglia. CHIP and dual-luciferase experiments verify the interaction between IRF1 and NCOA1. CHIP and dual-luciferase experiments were used to verify the interaction between IRF1 and NCOA1. Adeno-associated viruses interfering with IRF1 and NCOA1 were injected into the vitreous of rats to explore the functions of IRF1 and NCOA1 in RIR rats. RESULTS IRF1 and M1-type markers of microglia in retina of RIR rats increased, and autophagy level decreased. Knockdown of IRF1 and NCOA1 increased autophagy of OGD/R-induced retinal microglia, inhibited M1-type polarization and inflammatory cytokines, alleviated RIR injury in rats, and inhibited the activation of Wnt/β-catenin signalling pathway. The Wnt/β-catenin signalling pathway activator HLY78 partially reversed the effect of knocking down NCOA1 on retinal microglia. Mechanically, knockdown of IRF1 inhibited the activation of Wnt/β-catenin signalling pathway by inhibiting the transcription of NCOA1. CONCLUSION Inhibition of IRF1 has a protective effect on RIR damage by regulating NCOA1/Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jian-Shu Kang
- Department of ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Hua Zhong
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Hong-Mei Liu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Shen Nian
- Department of Pathology, Xi'an Medical University, Xi'an 710021, Shanxi Province, China
| | - Kai-Xiong Qing
- Department of Cardiac & Vascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
2
|
Jin X, Zhu Y, Xing L, Ding X, Liu Z. PANoptosis: a potential target of atherosclerotic cardiovascular disease. Apoptosis 2025:10.1007/s10495-025-02089-x. [PMID: 40285923 DOI: 10.1007/s10495-025-02089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/29/2025]
Abstract
PANoptosis is a newly discovered cell death pathway triggered by the innate immunizer, which in turn promotes the assembly of the PANoptosome and activates downstream effectors. As a special cell death mode, it is characterized by apoptosis, pyroptosis, and necroptosis at the same time; therefore, it is not feasible to inhibit PANoptosis by suppressing a single cell death pathway. However, active ingredients targeting the PANoptosome can effectively inhibit PANoptosis.Given the importance of cell death in disease, targeting PANoptosis would be an important therapeutic tool. Previous studies have focused more on infectious diseases and cancer, and the role of PANoptosis in the cardiovascular field has not been comprehensively addressed. While ASCVD is the number one killer of cardiovascular diseases, it is important to explore new targets to determine future research directions. Therefore, this review focuses on the assembly of PANoptosome, the molecular mechanism of PANoptosis, and the related mechanisms of PANoptosis leading to ASCVD such as myocardial infarction, ischemic cardiomyopathy and ischemic stroke, in order to provide a new perspective for the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Xiao Jin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yanan Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lina Xing
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xinyue Ding
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zongjun Liu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- , No. 164, Lanxi Road, Putuo District, Shanghai, China.
| |
Collapse
|
3
|
Wu JP, Wu C, Ma YJ, Zhu JB, Ma LL, Kong FJ. AIM2 Deficiency Alleviates Cardiac Inflammation and Hypertrophy in HFD/STZ-Induced Diabetic Mice by Inhibiting the NLRC4/IRF1 Signaling Pathway. J Cardiovasc Transl Res 2025; 18:94-109. [PMID: 39230659 DOI: 10.1007/s12265-024-10556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Absent in melanoma 2(AIM2) exacerbates atherosclerosis by inflammasome assembly. However, AIM2-mediated inflammation in diabetic cardiomyopathy remains incompletely understood. Here we investigate the role of AIM2 in high glucose (HG)- and diabetes-induced inflammatory cardiomyopathy. By RNA-seq, we found that AIM2 were significantly upregulated in HG-induced macrophages, upregulation of AIM2 in cardiac infiltrating macrophages was confirmed in a high-fat diet (HFD)/streptozotocin (STZ)-induceddiabetic mouse model . Therefore, AIM2 knockout mice were constructed. Compared to WT mice, HFD/STZ-induced cardiac hypertrophy and dysfunction were significantly improved in AIM2-/- mice, despite no changes in blood glucose and body weight. Further, AIM2 deficiency inhibited cardiac recruitment of M1-macrophages and cytokine production. Mechanistically, AIM2-deficient macrophgaes reduced IL-1β and TNF-α secretion, which impaired the NLRC4/IRF1 signaling in cardiomyocytes, and reduced further recruitment of macrophages, attenuated cardiac inflammation and hypertrophy, these effects were confirmed by silencing IRF1 in WT mice, and significantly reversed by overexpression of IRF1 in AIM2-/- mice. Taken together, our findings suggest that AIM2 serves as a novel target for the treatment of diabetic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Signal Transduction
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/chemically induced
- Mice, Knockout
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Diet, High-Fat
- Mice, Inbred C57BL
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Interferon Regulatory Factor-1/metabolism
- Interferon Regulatory Factor-1/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Ventricular Function, Left
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Ventricular Remodeling
- Inflammasomes/metabolism
- Inflammation Mediators/metabolism
- Mice
Collapse
Affiliation(s)
- Jian-Ping Wu
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Cheng Wu
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuan-Ji Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China
| | - Jian-Bing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China
| | - Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China.
| | - Fei-Juan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wu Jin Rd, Hong Kou District, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zheng Z, Xu J, Mao Y, Mei Z, Zhu J, Lan P, Wu X, Xu S, Zhang M. Sulforaphane improves post-resuscitation myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the Nrf2/IRF1/GPX4 pathway. Biomed Pharmacother 2024; 179:117408. [PMID: 39244999 DOI: 10.1016/j.biopha.2024.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Ferroptosis is an important type of cell death contributing to myocardial dysfunction induced by whole body ischemia reperfusion following cardiac arrest (CA) and resuscitation. Sulforaphane (SFN), known as the activator of the nuclear factor E2-related factor 2 (Nrf2), has been proven to effectively alleviate regional myocardial ischemia reperfusion injury. The present study was designed to investigate whether SFN could improve post-resuscitation myocardial dysfunction by inhibiting cardiomyocytes ferroptosis and its potential regulatory mechanism. METHODS AND RESULTS An in vivo pig model of CA and resuscitation was established. Hypoxia/reoxygenation (H/R)-stimulated AC16 cardiomyocytes was constructed as an in vitro model to simulate the process of CA and resuscitation. In vitro experiment, SFN reduced ferroptosis-related ferrous iron, lipid reactive oxygen species, and malondialdehyde, increased glutathione, and further promoted cell survival after H/R stimulation in AC16 cardiomyocytes. Mechanistically, the activation of Nrf2 with the SFN decreased interferon regulatory factor 1 (IRF1) expression, then reduced its binding to the promoter of glutathione peroxidase 4 (GPX4), and finally recovered the latter's transcription after H/R stimulation in AC16 cardiomyocytes. In vivo experiment, SFN reversed abnormal expression of IRF1 and GPX4, inhibited cardiac ferroptosis, and improved myocardial dysfunction after CA and resuscitation in pigs. CONCLUSIONS SFN could effectively improve myocardial dysfunction after CA and resuscitation, in which the mechanism was potentially related to the inhibition of cardiomyocytes ferroptosis through the regulation of Nrf2/IRF1/GPX4 pathway.
Collapse
Affiliation(s)
- Zhongjun Zheng
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yi Mao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First People's Hospital of Wenling, Taizhou, China
| | - Zhihan Mei
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, China
| | - Jinjiang Zhu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Yiwu Central Hospital, Jinhua, China
| | - Pin Lan
- Department of Emergency Medicine, Lishui Central Hospital, Lishui, China
| | - Xianlong Wu
- Department of Emergency Medicine, Taizhou First People's Hospital, Taizhou, China
| | - Shanxiang Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Wu Z, Li W, Wang S, Zheng Z. Role of deubiquitinase USP47 in cardiac function alleviation and anti-inflammatory immunity after myocardial infarction by regulating NLRP3 inflammasome-mediated pyroptotic signal pathways. Int Immunopharmacol 2024; 136:112346. [PMID: 38850785 DOI: 10.1016/j.intimp.2024.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Myocardial infarction (MI) is an event of heart attack due to the formation of plaques in the interior walls of the arteries. This study is conducted to explore the role of ubiquitin-specific peptidase 47 (USP47) in cardiac function and inflammatory immunity. MI mouse models were established, followed by an appraisal of cardiac functions, infarct size, pathological changes, and USP47 and NLRP3 levels. MI cell models were established in HL-1 cells using anoxia. Levels of cardiac function-associated proteins, USP7, interferon regulatory factor 1 (IRF1), platelet factor-4 (CXCL4), pyroptotic factors, and neutrophil extracellular traps (NETs) were determined. The bindings of IRF1 to USP47 and the CXCL4 promoter and the ubiquitination of IRF1 were analyzed. USP47 was upregulated in myocardial tissues of MI mice. USP47 inhibition alleviated cardiac functions, and decreased infarct size, pro-inflammatory cytokines, NETs, NLRP3, and pyroptosis. The ubiquitination and expression levels of IRF1 were increased by silencing USP47, and IRF1 bound to the CXCL4 promoter to promote CXCL4. Overexpression of IRF1 or CXCL4 in vitro and injection of Nigericin in vivo reversed the effect of silencing USP47 on alleviating pyroptosis and cardiac functions. Collectively, USP47 stabilized IRF1 and promoted CXCL4, further promoting pyroptosis, impairing cardiac functions, and aggravating immune inflammation through NLRP3 pathways.
Collapse
Affiliation(s)
- Zheng Wu
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Wenzheng Li
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoping Wang
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ze Zheng
- Center for Coronary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang N, Zhang Q, Zhang Z, Yu J, Fu Y, Gao J, Jiang X, Jiang P, Wen Z. IRF1 and IL1A associated with PANoptosis serve as potential immune signatures for lung ischemia reperfusion injury following lung transplantation. Int Immunopharmacol 2024; 139:112739. [PMID: 39074415 DOI: 10.1016/j.intimp.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Lung ischemia reperfusion injury (IRI) is the principal cause of primary graft dysfunction (PGD) after lung transplantation, affecting short-term and long-term mortality post-transplantation. PANoptosis, a newly identified form of regulated cell death involving apoptosis, necroptosis, and pyroptosis, is now considered a possible cause of organ damage and IRI. However, the specific role of PANoptosis to the development of lung IRI following lung transplantation is still not fully understood. METHODS In this study, we identified differentially expressed genes (DEGs) by analyzing the gene expression data from the GEO database related to lung IRI following lung transplantation. PANoptosis-IRI DEGs were determined based on the intersection of PANoptosis-related genes and screened DEGs. Hub genes associated with lung IRI were further screened using Lasso regression and the SVM-RFE algorithm. Additionally, the Cibersort algorithm was employed to assess immune cell infiltration and investigate the interaction between immune cells and hub genes. The upstream miRNAs that may regulate hub genes and compounds that may interact with hub genes were also analyzed. Moreover, an external dataset was utilized to validate the differential expression analysis of hub genes. Finally, the expressions of hub genes were ultimately confirmed using quantitative real-time PCR, western blotting, and immunohistochemistry in both animal models of lung IRI and lung transplant patients. RESULTS PANoptosis-related genes, specifically interferon regulatory factor 1 (IRF1) and interleukin 1 alpha (IL1A), have been identified as potential biomarkers for lung IRI following lung transplantation. In mouse models of lung IRI, both the mRNA and protein expression levels of IRF1 and IL1A were significantly elevated in lung tissues of the IRI group compared to the control group. Moreover, lung transplant recipients exhibited significantly higher protein levels of IRF1 and IL1A in PBMCs when compared to healthy controls. Patients who experienced PGD showed elevated levels of IRF1 and IL1A proteins in their blood samples. Furthermore, in patients undergoing lung transplantation, the protein levels of IRF1 and IL1A were notably increased in peripheral blood mononuclear cells (PBMCs) compared to healthy controls. In addition, patients who developed primary graft dysfunction (PGD) exhibited even higher protein levels of IRF1 and IL1A than those without PGD. Furthermore, PANoptosis was observed in the lung tissues of mouse models of lung IRI and in the PBMCs of patients who underwent lung transplantation. CONCLUSIONS Our research identified IRF1 and IL1A as biomarkers associated with PANoptosis in lung IRI, suggesting their potential utility as targets for diagnosing and therapeutically intervening in lung IRI and PGD following lung transplantation.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Jiang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Chen XY, Xie MQ, Huang WL, Li WJ, Lv YN, Peng XP. Interferon-regulatory factor-1 boosts bevacizumab cardiotoxicity by the vascular endothelial growth factor A/14-3-3γ axis. ESC Heart Fail 2024; 11:986-1000. [PMID: 38234115 DOI: 10.1002/ehf2.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
AIM Myocardial injury is a significant cause of death. This study investigated the role and underlying mechanism of interferon-regulatory factor-1 (IRF1) in bevacizumab (BVZ)-induced cardiomyocyte injury. METHODS AND RESULTS HL-1 cells and C57BL/6 mice receiving BVZ treatment were used to establish in vitro and in vivo models of myocardial injury. The relationship between VEGFA and 14-3-3γ was verified through co-immunoprecipitation and Glutathione S Transferase (GST) pull-down assay. Cell viability and apoptosis were analysed by MTT, propidium iodide (PI) staining and flow cytometry. The release of lactate dehydrogenase (LDH), cardiac troponins T (cTnT), and creatine kinase MB (CK-MB) was measured using the enzyme linked immunosorbent assay. The effects of knocking down IRF1 on BVZ-induced mice were analysed in vivo. IRF1 levels were increased in BVZ-treated HL-1 cells. BVZ treatment induced apoptosis, inhibited cell viability, and promoted the release of LDH, cTnT, and CK-MB. IRF1 silencing suppressed BVZ-induced myocardial injury, whereas IRF1 overexpression had the opposite effect. IRF1 regulated VEGFA expression by binding to its promoter, with the depletion of VEGFA or 14-3-3γ reversing the effects of IRF1 knockdown on the cell viability and apoptosis of BVZ-treated HL-1 cells. 14-3-3γ overexpression promoted cell proliferation, inhibited apoptosis, and reduced the release of LDH, cTnT, and CK-MB, thereby alleviating BVZ-induced HL-1 cell damage. In vivo, IRF1 silencing alleviated BVZ-induced cardiomyocyte injury by regulating the VEGFA/14-3-3γ axis. CONCLUSION The IRF1-mediated VEGFA/14-3-3γ signalling pathway promotes BVZ-induced myocardial injury. Our study provides evidence for potentially new target genes for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Xuan-Ying Chen
- Department of Pharmacy, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Meng-Qi Xie
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, P. R. China
| | - Wei-Lin Huang
- Department of Cardiovascular, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Yan-Ni Lv
- Department of Pharmacy, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Xiao-Ping Peng
- Department of Cardiovascular, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|