1
|
Emerson JI, Shi W, Conlon FL. Sex-specific response to A1BG loss results in female dilated cardiomyopathy. Biol Sex Differ 2025; 16:27. [PMID: 40270023 PMCID: PMC12016195 DOI: 10.1186/s13293-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cardiac disease often manifests with sex-specific differences in frequency, pathology, and progression. However, the molecular mechanisms underlying these differences remain incompletely understood. The glycoprotein A1BG has emerged as a female-specific regulator of cardiac structure and integrity, yet its precise role in the female heart is not well characterized. METHODS To investigate the sex-specific role of A1BG in the heart, we generated both a conditional A1bg knockout allele and an A1bg Rosa26 knockin allele. We employed histological analysis, electrocardiography, RNA sequencing (RNA-seq), transmission electron microscopy (TEM), western blotting, mass spectrometry, and immunohistochemistry to assess structural, functional, and molecular phenotypes. RESULTS Loss of A1BG in cardiomyocytes leads to persistent structural remodeling in female, but not male, hearts. Despite preserved systolic function in female A1bgCM/CM mice left ventricular dilation and wall thinning are evident and sustained over time, consistent with early-stage dilated cardiomyopathy (DCM). Transcriptomic analyses reveal that A1BG regulates key metabolic pathways in females, including glucose-6-phosphate and acetyl-CoA metabolism. TEM imaging highlights sex-specific disruption of intercalated disc architecture in female cardiomyocytes. These findings suggest that the absence of A1BG initiates chronic pathological remodeling in female hearts, potentially predisposing them to DCM under stress or aging. CONCLUSION A1BG is essential for maintaining ventricular structural integrity in female, but not male, hearts, leading to a chronic remodeling consistent with early-stage DCM.
Collapse
Affiliation(s)
- James I Emerson
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Shi
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, USA
| | - Frank L Conlon
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Shravya MS, Chaurasia A, Girisha KM, Nayak SS. Biallelic variants in AGRN with recurrent pregnancy losses in a family with a fetal akinesia deformation sequence. Clin Dysmorphol 2025; 34:00019605-990000000-00086. [PMID: 39807604 PMCID: PMC7617632 DOI: 10.1097/mcd.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS. METHODS We identified a nonconsanguineous couple with recurrent pregnancy loss. Detailed phenotyping of fetuses was performed via perinatal autopsy. Genetic evaluation was performed along with split-read analysis to identify variants. RESULTS Perinatal phenotyping revealed an FADS in the family, and genomic testing identified novel null variants in AGRN. First, whole-exome sequencing revealed the maternally inherited heterozygous variant c.952+1_952+3del in AGRN in fetuses. Split-read analysis of the exome led to the identification of the paternally inherited second variant, a heterozygous deletion of 41.33 kb, encompassing exons 1 and 2 of AGRN. CONCLUSION This study highlights the importance of incorporating split-read analysis in clinical practice and emphasizes the association of null variants in AGRN with the FADS. To the best of our knowledge, this is the second report explaining FADS and null variants in AGRN.
Collapse
Affiliation(s)
- Mangalore S. Shravya
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katta M. Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Shalini S. Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Hamdi Y, Trabelsi M, Ghedira K, Boujemaa M, Ben Ayed I, Charfeddine C, Souissi A, Rejeb I, Kammoun Rebai W, Hkimi C, Neifar F, Jandoubi N, Mkaouar R, Chaouch M, Bennour A, Kamoun S, Chaker Masmoudi H, Abid N, Mezghani Khemakhem M, Masmoudi S, Saad A, BenJemaa L, BenKahla A, Boubaker S, Mrad R, Kamoun H, Abdelhak S, Gribaa M, Belguith N, Kharrat N, Hmida D, Rebai A. Genome Tunisia Project: paving the way for precision medicine in North Africa. Genome Med 2024; 16:104. [PMID: 39187811 PMCID: PMC11348534 DOI: 10.1186/s13073-024-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Key discoveries and innovations in the field of human genetics have led to the foundation of molecular and personalized medicine. Here, we present the Genome Tunisia Project, a two-phased initiative (2022-2035) which aims to deliver the reference sequence of the Tunisian Genome and to support the implementation of personalized medicine in Tunisia, a North African country that represents a central hub of population admixture and human migration between African, European, and Asian populations. The main goal of this initiative is to develop a healthcare system capable of incorporating omics data for use in routine medical practice, enabling medical doctors to better prevent, diagnose, and treat patients. METHODS A multidisciplinary partnership involving Tunisian experts from different institutions has come to discern all requirements that would be of high priority to fulfill the project's goals. One of the most urgent priorities is to determine the reference sequence of the Tunisian Genome. In addition, extensive situation analysis and revision of the education programs, community awareness, appropriate infrastructure including sequencing platforms and biobanking, as well as ethical and regulatory frameworks, have been undertaken towards building sufficient capacity to integrate personalized medicine into the Tunisian healthcare system. RESULTS In the framework of this project, an ecosystem with all engaged stakeholders has been implemented including healthcare providers, clinicians, researchers, pharmacists, bioinformaticians, industry, policymakers, and advocacy groups. This initiative will also help to reinforce research and innovation capacities in the field of genomics and to strengthen discoverability in the health sector. CONCLUSIONS Genome Tunisia is the first initiative in North Africa that seeks to demonstrate the major impact that can be achieved by Human Genome Projects in low- and middle-income countries to strengthen research and to improve disease management and treatment outcomes, thereby reducing the social and economic burden on healthcare systems. Sharing this experience within the African scientific community is a chance to turn a major challenge into an opportunity for dissemination and outreach. Additional efforts are now being made to advance personalized medicine in patient care by educating consumers and providers, accelerating research and innovation, and supporting necessary changes in policy and regulation.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia.
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Ikhlas Ben Ayed
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Rejeb
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Wafa Kammoun Rebai
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fadoua Neifar
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nouha Jandoubi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ayda Bennour
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hend Chaker Masmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Department of Histology and Cytogenetics, Institute Pasteur of Tunis, Tunis, Tunisia
| | - Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Ibn Sina Street, Monastir, 5000, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 1068, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ali Saad
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Lamia BenJemaa
- Department of Congenital and Hereditary Diseases, Mongi Slim University Hospital, Sidi Daoud La Marsa, Tunis, Tunisia
- Santé Mère-Enfant (LR22SP01), Tunis, Tunisia
| | - Alia BenKahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hassen Kamoun
- Department of Medical Genetics, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, place Pasteur, B.P. 74, Tunis, Belvédère, 1002, Tunisia
- Communication, Science and Society Support Unit (UniSS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Moez Gribaa
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Neila Belguith
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human Molecular Genetics, LR99ES33, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Hmida
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Genetics, Farhat HACHED University Hospital, Sousse, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Emerson JI, Shi W, Conlon FL. Sex-Specific Response to A1BG Loss Results in Female Dilated Cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-4631369. [PMID: 39070637 PMCID: PMC11276010 DOI: 10.21203/rs.3.rs-4631369/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Cardiac disease often manifests differently in terms of frequency and pathology between men and women. However, the mechanisms underlying these differences are not fully understood. The glycoprotein A1BG is necessary for proper cardiac function in females but not males. Despite this, the role of A1BG in the female heart remains poorly studied. Methods To determine the sex differential function of A1BG, we generated a novel conditional A1bg allele and a novel conditional A1bg Rosa26 knockin allele. Histology, electrocardiography, transcriptional profiling (RNA-seq), transmission electron microscopy, western blot analyses, mass spectrometry, and immunohistochemistry were used to assess cardiac structure and function. Results The study reveals that the absence of A1BG results in significant cardiac dysfunction in female but not male mice. Gene expression underscores that A1BG plays a critical role in metabolic processes and the integrity of intercalated discs in female cardiomyocytes. This dysfunction may be related to sex-specific A1BG cardiac interactomes and manifests as structural and functional alterations in the left ventricle indicative of dilated cardiomyopathy, thus suggesting a sex-specific requirement for A1BG in cardiac health. Conclusion The loss of A1BG in cardiomyocytes leads to dilated cardiomyopathy in females, not males.
Collapse
Affiliation(s)
| | - Wei Shi
- University of North Carolina at Chapel Hill
| | | |
Collapse
|
5
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
6
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
7
|
Henriquez E, Hernandez EA, Mundla SR, Wankhade DH, Saad M, Ketha SS, Penke Y, Martinez GC, Ahmed FS, Hussain MS. Catecholaminergic Polymorphic Ventricular Tachycardia and Gene Therapy: A Comprehensive Review of the Literature. Cureus 2023; 15:e47974. [PMID: 38034271 PMCID: PMC10686237 DOI: 10.7759/cureus.47974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited channelopathy. In this review, we summarize the epidemiology, pathophysiology, clinical characteristics, diagnostics, genetic mutations, standard treatment, and the emergence of potential gene therapy. This inherited cardiac arrhythmia presents in a bimodal distribution with no association between sex or ethnicity. Six different CPVT genes have been identified, however, most of the cases are related to a heterozygous, gain-of-function mutation on the ryanodine receptor-2 gene (RyR2) and calsequestrin-2 gene (CASQ2) that causes delayed after-depolarization. The diagnosis is clinically based, seen in patients presenting with syncope after exercise or stress-related emotions, as well as cardiac arrest with full recovery or even sudden cardiac death. Standard treatment relies on beta-blockers, with add-on therapy, flecainide, and cardiac sympathetic denervation as second-line treatments. An implantable cardioverter-defibrillator is indicated for patients who have suffered a cardiac arrest. Potential gene therapy has emerged in the last 20 years and accelerated because of associated viral vector application in increasing the efficiency of prolonged cardiac gene expression. Nevertheless, human trials for gene therapy for CPVT have been limited as the population is rare, and an excessive amount of funding is required.
Collapse
Affiliation(s)
- Elvis Henriquez
- Miscellaneous, Facultad de Medicina, Universidad de Ciencias Medicas, Las Tunas, CUB
| | - Edwin A Hernandez
- Miscellaneous, Faculty of Medicine, Universidad de El Salvador, San Salvador, SLV
| | - Sravya R Mundla
- Internal Medicine, Apollo Institute of Medical Sciences and Research, Hyderabad, IND
| | | | - Muhammad Saad
- Internal Medicine, Fatima Memorial College (FMH) of Medicine and Dentistry, Lahore, PAK
| | - Sagar S Ketha
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Yasaswini Penke
- Internal Medicine, Government Medical College, Srikakulam, IND
| | - Gabriela C Martinez
- Internal Medicine, Faculty of Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Faiza S Ahmed
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | | |
Collapse
|
8
|
Yang Q, Zhang Q, Qin Z, Zhang S, Yi S, Yi S, Zhang Q, Luo J. Novel compound heterozygous variants in the RPL3L gene causing dilated cardiomyopathy type-2D: a case report and literature review. BMC Med Genomics 2023; 16:127. [PMID: 37308880 DOI: 10.1186/s12920-023-01567-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy type-2D (CMD2D) is a rare heart disease causing a severe cardiomyopathy with neonatal onset and rapid progression to cardiac decompensation and death in untreated patients. CMD2D is an autosomal recessive disease resulting from variants in the RPL3L gene, which encodes the 60 S ribosomal protein exclusively expressed in skeletal and cardiac muscle and plays an essential role in myoblast growth and fusion. Previous reports have only associated CMD2D with a small duplication and seven nucleotide substitution in the RPL3L gene. CASE PRESENTATION In this study, we report the case of a 31 days old Chinese infant patient with severe dilated cardiomyopathy (DCM) and rapid decompensation along with other cardiac malformations. In addition to previously reported clinical features, the patient showed the previously unreported complication of occasional premature atrial contractions and a first-degree atrioventricular block. Whole-exome sequencing (WES) revealed compound heterozygous variants (c.80G > A (p.Gly27Asp) and c.1074dupA (p.Ala359fs*6)) in RPL3L (NM_005061.3). The latter novel variant may result in the absence of protein production with a significant decrease in mRNA level, suggesting it is a loss-of-function mutation. CONCLUSIONS This is the first case report of RPL3L-associated neonatal dilated cardiomyopathy in China. The molecular confirmation of the patient expands the genetic spectrum of CMD2D, and the clinical manifestation of CMD2D in the patient provides additional clinical information regarding this disease.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China.
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
9
|
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:3365. [PMID: 36834774 PMCID: PMC9963263 DOI: 10.3390/ijms24043365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1006, Tunisia
| | - Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| |
Collapse
|
10
|
Grimes KM, Prasad V, Huo J, Kuwabara Y, Vanhoutte D, Baldwin TA, Bowers SLK, Johansen AKZ, Sargent MA, Lin SCJ, Molkentin JD. Rpl3l gene deletion in mice reduces heart weight over time. Front Physiol 2023; 14:1054169. [PMID: 36733907 PMCID: PMC9886673 DOI: 10.3389/fphys.2023.1054169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Yasuhide Kuwabara
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Davy Vanhoutte
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Tanya A Baldwin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Stephanie L K Bowers
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Suh-Chin J Lin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Das BB, Gajula V, Arya S, Taylor MB. Compound Heterozygous Missense Variants in RPL3L Genes Associated with Severe Forms of Dilated Cardiomyopathy: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1495. [PMID: 36291431 PMCID: PMC9600237 DOI: 10.3390/children9101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/14/2023]
Abstract
Whole exome sequencing has identified an infant girl with fulminant dilated cardiomyopathy (DCM), leading to severe acute heart failure associated with ribosomal protein large 3-like (RPL3L) gene pathologic variants. Other genetic tests for mitochondrial disorders by sequence analysis and deletion testing of the mitochondrial genome were negative. Secondary causes for DCM due to metabolic and infectious etiologies were ruled out. She required a Berlin-Excor left ventricular assist device due to worsening of her heart failure as a bridge to orthotopic heart transplantation. At three months follow-up after heart transplantation, she has been doing well. We reviewed the literature on published RPL3L-related DCM cases and their outcomes. Bi-allelic variants in RPL3L have been reported in only seven patients from four unrelated families in the literature. RPL3L is a newer and likely pathogenic gene associated with a severe form of early-onset dilated cardiomyopathy with poor prognosis necessitating heart transplantation.
Collapse
Affiliation(s)
- Bibhuti B. Das
- Department of Pediatrics, Division of Cardiology, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Viswanath Gajula
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sandeep Arya
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary B. Taylor
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|