1
|
Ghasemi A, Eslami Ardakani M, Togha M, Yazdi N, Lang AE, Amini E, Rohani M, Alavi A. A Novel Homozygous Variant in the MCOLN1 Gene Associated With Severe Oromandibular Dystonia and Parkinsonism. Can J Neurol Sci 2025; 52:110-118. [PMID: 38532569 DOI: 10.1017/cjn.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND Mucolipidosis type IV (MLIV) is a rare, progressive lysosomal storage disorder characterized by severe intellectual disability, delayed motor milestones and ophthalmologic abnormalities. MLIV is an autosomal recessive disease caused by mutations in the MCOLN1 gene, encoding mucolipin-1 which is responsible for maintaining lysosomal function. OBJECTIVES AND METHODS Here, we report a family of four Iranian siblings with cognitive decline, progressive visual and pyramidal disturbances, and abnormal movements manifested by severe oromandibular dystonia and parkinsonism. MRI scans of the brain demonstrated signal abnormalities in the white matter and thinning of the corpus callosum. RESULTS AND CONCLUSIONS Whole-exome sequencing identified a novel homozygous variant, c.362C > T:p. Thr121Met in the MCOLN1 gene consistent with a diagnosis of MLIV. The presentation of MLIV may overlap with a variety of other neurological diseases, and genetic analysis is an important strategy to clarify the diagnosis. This is an important point that clinicians should be familiar with. The novel variant c.362C > T:p. Thr121Met herein described may be related to a comparatively older age at onset. Our study also expands the clinical spectrum of MLIV associated with the MCOLN1 variants and introduces a novel likely pathogenic variant for testing in MLIV cases that remain unresolved.
Collapse
Affiliation(s)
- Aida Ghasemi
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Eslami Ardakani
- Neurology Ward, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Neurology Ward, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Yazdi
- Department of Neurology, School of Medicine, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman. Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Elahe Amini
- Department of Neurology, School of Medicine, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol 2023; 278:277-304. [PMID: 36894791 DOI: 10.1007/164_2023_637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.
Collapse
Affiliation(s)
- Christian Wahl-Schott
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.
| | - Konstantin Hennis
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Hristo Varbanov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover(MHH), Hannover, Germany
| |
Collapse
|
3
|
Gibson D, Brar V, Li R, Kalra A, Goodwin A, Couser N. The High Association of Ophthalmic Manifestations in Individuals With Mucolipidosis Type IV. J Pediatr Ophthalmol Strabismus 2022; 59:332-337. [PMID: 35192386 DOI: 10.3928/01913913-20211206-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To present a case report of mucolipidosis type IV (ML4) and review the literature for all of the ophthalmic abnormalities associated with this disease. METHODS A systematic review of the literature using PubMed/Medline was conducted, and with the addition of the current case report, the eye and ocular adnexa findings of 93 patients with ML4 are summarized. RESULTS The most common ophthalmic findings reported among the 93 patients included corneal clouding (90.3%), strabismus (58.1%), optic nerve pallor (52.2%), retinal dystrophy/pigmentary changes (50.5%), and retinal vascular attenuation (38.9%). Other less commonly reported findings included nystagmus, photophobia, ocular pain, excessive lacrimation, ptosis, and cataracts. CONCLUSIONS The ophthalmic findings discussed in the current case report and literature review serve as indicators for ML4. Early diagnosis of ML4 is important in forming a multidisciplinary management plan, genetic counseling strategy, and maximizing the visual development of affected individuals. [J Pediatr Ophthalmol Strabimus. 2022;59(5):332-337.].
Collapse
|
4
|
Zerem A, Ben-Sira L, Vigdorovich N, Leibovitz Z, Fisher Y, Schiffmann R, Grishchuk Y, Misko AL, Orenstein N, Lev D, Lerman-Sagie T, Kidron D. White matter abnormalities and iron deposition in prenatal mucolipidosis IV- fetal imaging and pathology. Metab Brain Dis 2021; 36:2155-2167. [PMID: 33963976 DOI: 10.1007/s11011-021-00742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Mucolipidosis type IV (MLIV; OMIM 252,650) is an autosomal recessive lysosomal disorder caused by mutations in MCOLN1. MLIV causes psychomotor impairment and progressive vision loss. The major hallmarks of postnatal brain MRI are hypomyelination and thin corpus callosum. Human brain pathology data is scarce and demonstrates storage of various inclusion bodies in all neuronal cell types. The current study describes novel fetal brain MRI and neuropathology findings in a fetus with MLIV. Fetal MRI was performed at 32 and 35 weeks of gestation due to an older sibling with spastic quadriparesis, visual impairment and hypomyelination. Following abnormal fetal MRI results, the parents requested termination of pregnancy according to Israeli regulations. Fetal autopsy was performed after approval of the high committee for pregnancy termination. A genetic diagnosis of MLIV was established in the fetus and sibling. Sequential fetal brain MRI showed progressive curvilinear hypointensities on T2-weighted images in the frontal deep white matter and a thin corpus callosum. Fetal brain pathology exhibited a thin corpus callosum and hypercellular white matter composed of reactive astrocytes and microglia, multifocal white matter abnormalities with mineralized deposits, and numerous aggregates of microglia with focal intracellular iron accumulation most prominent in the frontal lobes. This is the first description in the literature of brain MRI and neuropathology in a fetus with MLIV. The findings demonstrate prenatal white matter involvement with significant activation of microglia and astrocytes and impaired iron metabolism.
Collapse
Affiliation(s)
- Ayelet Zerem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ben-Sira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Radiology, Department of Radiology, Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nitzan Vigdorovich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.
| | - Zvi Leibovitz
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Obstetrics-Gynecology Ultrasound Unit, Bnai-Zion Medical Center and Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - Yael Fisher
- Department of Pathology, Rambam Health Care Campus Haifa and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Albert L Misko
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Naama Orenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel
| | - Dorit Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Genetics Institute, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Debora Kidron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Pathology Department, Meir Medical Center, Kfar-Saba, Israel
| |
Collapse
|
5
|
Hayashi T, Hosono K, Kubo A, Kurata K, Katagiri S, Mizobuchi K, Kurai M, Mamiya N, Kondo M, Tachibana T, Saitsu H, Ogata T, Nakano T, Hotta Y. Long-term observation of a Japanese mucolipidosis IV patient with a novel homozygous p.F313del variant of MCOLN1. Am J Med Genet A 2020; 182:1500-1505. [PMID: 32220057 DOI: 10.1002/ajmg.a.61575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessively inherited lysosomal storage disorder characterized by progressive psychomotor delay and retinal degeneration that is associated with biallelic variants in the MCOLN1 gene. The gene, which is expressed in late endosomes and lysosomes of various tissue cells, encodes the transient receptor potential channel mucolipin 1 consisting of six transmembrane domains. Here, we described 14-year follow-up observation of a 4-year-old Japanese male MLIV patient with a novel homozygous in-frame deletion variant p.(F313del), which was identified by whole-exome sequencing analysis. Neurological examination revealed progressive psychomotor delay, and atrophy of the corpus callosum and cerebellum was observed on brain magnetic resonance images. Ophthalmologically, corneal clouding has remained unchanged during the follow-up period, whereas optic nerve pallor and retinal degenerative changes exhibited progressive disease courses. Light-adapted electroretinography was non-recordable. Transmission electron microscopy of granulocytes revealed characteristic concentric multiple lamellar structures and an electron-dense inclusion in lysosomes. The in-frame deletion variant was located within the second transmembrane domain, which is of putative functional importance for channel properties.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Akiko Kubo
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Kinan Hospital, Mie, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Norihito Mamiya
- Department of Pediatrics, Kinan Hospital, Mie, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
6
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Zhang Q, Presswalla F, Feathers K, Cao X, Hughes BA, Zacks DN, Thompson DA, Miller JML. A platform for assessing outer segment fate in primary human fetal RPE cultures. Exp Eye Res 2018; 178:212-222. [PMID: 30336126 DOI: 10.1016/j.exer.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/01/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022]
Abstract
The daily shedding and renewal of photoreceptor outer segments (OS) is critical for maintaining vision. This process relies on the efficient uptake, degradation, and sorting of shed OS material by the retinal pigment epithelium (RPE). Poor OS degradation has been linked to retinal degenerations such as Stargardt disease and may contribute to macular degeneration. While primary human fetal RPE cultures have emerged as a valuable model of in vivo human RPE function, surprisingly few studies have utilized the model for tracking the degradation and fate of OS components in the RPE. Here, we establish an improved platform for studying this topic by modifying existing protocols and creating new methods. Our human fetal culture model facilitates studies of RPE secretion in response to OS ingestion, preserves RPE differentiation and polarization during live-cell imaging of OS phagocytosis, and minimizes costs. We optimize Mer tyrosine kinase-dependent OS phagocytosis assays specifically in human fetal cultures and provide a simple and accurate method for measuring total OS consumption by the RPE. Finally, we utilize chemical transfection, dextran labeling, and immunocytochemistry to evaluate key players in OS degradation, including lysosomes and autophagy proteins. To facilitate quantification of autophagy vesicles, we develop customized image analysis macros in the Fiji/ImageJ software environment. These protocols will facilitate a broad range of studies in human fetal RPE cultures aimed at determining the ultimate fate of OS components after ingestion, a critical step in understanding the pathogenesis of numerous retinal diseases.
Collapse
Affiliation(s)
- Qitao Zhang
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Feriel Presswalla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kecia Feathers
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Debra A Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason M L Miller
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Segal P, Pode-Shakked B, Raas-Rothschild A. Elucidating the behavioral phenotype of patients affected with mucolipidosis IV: What can we learn from the parents? Eur J Med Genet 2017; 60:340-344. [PMID: 28392473 DOI: 10.1016/j.ejmg.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 03/19/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mucolipidosis type IV (ML-IV) is a rare autosomal recessive lysosomal storage disorder which presents with nonspecific developmental delay. Nowadays with the use of new tools such as next generation sequencing, more ML-IV affected patients are diagnosed. Still, identifying the behavioral phenotype might be of help for early diagnosis and anticipatory guidance, as well as for counseling of the families. OBJECTIVE Identification of the behavioral characteristics of 12 ML-IV patients, aged from 2.5 to 34 years, based on their caregivers' observations. METHODS The information was gathered from the patients' parents using an extensive semi-structured interview especially designed for this study. Each interview lasted approximately three hours. RESULTS Patients were uniformly described as friendly and show explicit pleasure from both social interactions and music. They all presented delays in psychomotor development, while their general health was reported as good. Parents reported that the patients present deterioration of motor and communication skills over the years. Episodes of ocular pain, with ipsilateral flushing of the face and tearing were frequently reported, as was shortening of the Achilles tendon. Since the identification of the ML-IV gene, diagnosis is made earlier in life. CONCLUSION We suggest that ML-IV be considered in the differential diagnosis of patients with developmental delay, who present the behavioral phenotype reported here. This pattern could also be useful for the ancitipatory guidance in the care of ML-IV affected patients. Further clinical research is warranted to confirm these preliminary findings.
Collapse
Affiliation(s)
- Perri Segal
- Department of Psychology, Hebrew University, Jerusalem, Israel
| | - Ben Pode-Shakked
- Institute of Rare Diseases & Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Dr. Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - Annick Raas-Rothschild
- Institute of Rare Diseases & Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Saijo H, Hayashi M, Ezoe T, Ohba C, Saitsu H, Kurata K, Matsumoto N. The first genetically confirmed Japanese patient with mucolipidosis type IV. Clin Case Rep 2016; 4:509-12. [PMID: 27190617 PMCID: PMC4856247 DOI: 10.1002/ccr3.540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 12/25/2015] [Accepted: 02/23/2016] [Indexed: 11/12/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a rare neurodegenerative disorder characterized by severe psychomotor delay and visual impairment. We report the brain pathology in the first Japanese patient of MLIV with a novel homozygous missense mutation in MCOLN1. We detected the localized increase in p62‐reactive astrocytes in the basal ganglia.
Collapse
Affiliation(s)
- Harumi Saijo
- Departments of PediatricsTokyo Metropolitan Higashiyamato Medical Center for developmental/multiple disabilitiesTokyoJapan
| | - Masaharu Hayashi
- Department of Brain Development and Neural RegenerationTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takanori Ezoe
- Departments of PediatricsTokyo Metropolitan Higashiyamato Medical Center for developmental/multiple disabilitiesTokyoJapan
| | - Chihiro Ohba
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| | - Hirotomo Saitsu
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| | - Kiyoko Kurata
- Departments of PediatricsTokyo Metropolitan Higashiyamato Medical Center for developmental/multiple disabilitiesTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| |
Collapse
|