1
|
Liu Y, Zhang G, Wang D, Chen G, Gao F, Tung CH, Wang Y. A cryptand-like Ti-coordination compound with visible-light photocatalytic activity in CO 2 storage. Dalton Trans 2024; 53:1989-1998. [PMID: 38205664 DOI: 10.1039/d3dt04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A cryptand-like Ti-coordination compound, namely Ti12Cs, comprising two Ti6-salicylate cages and hosting two Cs+ ions, was synthesized by the solvothermal method. It exhibits strong visible-light absorption with an absorption band edge of 652 nm, attributed to the electron transition from salicylate ligands to Ti ions. Electrochemical impedance, visible-light transient photocurrent response, and photoluminescence spectra confirm that Ti12Cs has excellent visible-light response and charge-separation properties. Ti12Cs can be used as a heterogeneous and recyclable photocatalyst for CO2/epoxide cycloaddition, with high utilization efficiency of visible-light under mild conditions. The mechanism investigation points to a synergistic effect of photocatalysis and Lewis acid catalysis.
Collapse
Affiliation(s)
- Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Li W, Lin J, Huang S, Liu Q, Wei W, Li X. Cycloaddition of N-arylnitrones with donor-acceptor oxiranes via C-C bond cleavage to construct 1,5,2-dioxazinanes. Org Biomol Chem 2023; 21:6778-6782. [PMID: 37564027 DOI: 10.1039/d3ob00375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Highly functionalized 1,5,2-dioxazinanes could be smoothly produced via a Sc(OTf)3-catalyzed chemoselective [3 + 3] cycloaddition of various N-arylnitrones with a series of donor-acceptor oxiranes. This reaction involves in situ generation of 1,3-dipoles through Sc(OTf)3-catalyzed C-C bond cleavage of oxiranes and moderate to high yields were obtained for most substrates. This transformation features C-C bond cleavage of donor-acceptor oxiranes, accessible starting materials and mild reaction conditions.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenlong Wei
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
3
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
4
|
Lin Y, Su Y, Ko B, Datta A, Huang J. Synthesis and structural characterization of monomeric aluminum keto‐imine complexes: Catalytic activity toward
CO
2
/styrene oxide coupling and ε‐caprolactone ring opening polymerization. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Yu‐Wei Lin
- Department of Chemistry National Changhua University of Education Changhua Taiwan
| | - Yu‐Chia Su
- Department of Chemistry National Chung‐Hsing University Taichung Taiwan
| | - Bao‐Tsan Ko
- Department of Chemistry National Chung‐Hsing University Taichung Taiwan
| | - Amitabha Datta
- Department of Chemistry National Changhua University of Education Changhua Taiwan
| | - Jui‐Hsien Huang
- Department of Chemistry National Changhua University of Education Changhua Taiwan
| |
Collapse
|
5
|
Said A, Zhang G, Liu C, Wang D, Niu H, Liu Y, Chen G, Tung CH, Wang Y. A butterfly-like lead-doped titanium-oxide compound with high performance in photocatalytic cycloaddition of CO 2 to epoxide. Dalton Trans 2023; 52:2392-2403. [PMID: 36723215 DOI: 10.1039/d2dt03990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cycloaddition reaction of CO2 to epoxides is quite promising for CO2 capture and storage as well as the production of value-added fine chemicals. Herein, a novel atomically precise lead-doped titanium-oxide cluster with the formula Ti10Pb2O16(phen)4(Ac)12(DMF)2 (denoted as Ti10Pb2; phen = 1,10-phenanthroline; Ac = acetate; DMF = dimethylformamide) was synthesized through a facile solvothermal process, and is a molecular photocatalyst with surface-anchored main-group metal active sites. Its structure was characterized by single-crystal X-ray diffraction and other complementary techniques. Ti10Pb2 showed high photo-response and charge-separation efficiency under simulated sunlight irradiation. Ti10Pb2 was successfully used in the cycloaddition reaction of CO2 with epoxides under solvent-free conditions. While its catalytic activity due to the Lewis acidity was moderate, simulated solar light irradiation further enhanced the reaction rate, demonstrating the synergistic effect of photocatalysis and Lewis-acid thermocatalysis.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Caiyun Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Huihui Niu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. .,State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Shang L, Chen XL, Liu L, Cai M, Yan RK, Cui HL, Yang H, Wang JJ. Catalytic performance of MOFs containing trinuclear lanthanides clusters in the cycladdition reaction of CO2 and epoxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Nayak P, Murali AC, Pal PK, Priyakumar UD, Chandrasekhar V, Venkatasubbaiah K. Tetra-Coordinated Boron-Functionalized Phenanthroimidazole-Based Zinc Salen as a Photocatalyst for the Cycloaddition of CO 2 and Epoxides. Inorg Chem 2022; 61:14511-14516. [PMID: 36074754 DOI: 10.1021/acs.inorgchem.2c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique B-N coordinated phenanthroimidazole-based zinc salen was synthesized. The zinc salen thus synthesized acts as a photocatalyst for the cycloaddition of carbon dioxide with terminal epoxides under ambient conditions. DFT study of the cycloaddition of carbon dioxide with terminal epoxide indicates the preference of the reaction pathway when photocatalyzed by zinc salen. We anticipate that this strategy will help to design new photocatalysts for CO2 fixation.
Collapse
Affiliation(s)
- Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| | - Pradeep Kumar Pal
- International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- International Institute of Information Technology, Hyderabad 500 032, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhaba National Institute, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
8
|
Bai X, Song D, Wei J, Wang D, Li J. Cationic Zn-Porphyrin Polymer Coated on CNTs as Bifunctional Catalyst for the Conversion of CO2 to Cyclic Carbonates. Catal Letters 2022. [DOI: 10.1007/s10562-021-03806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Borah R, Lahkar S, Deori N, Brahma S. Synthesis, characterization and application of oxovanadium(iv) complexes with [NNO] donor ligands: X-ray structures of their corresponding dioxovanadium(v) complexes. RSC Adv 2022; 12:13740-13748. [PMID: 35541435 PMCID: PMC9076100 DOI: 10.1039/d2ra01448c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Two oxovanadium(iv) complexes ligated by [NNO] donor ligands have been synthesized and characterized by ESI-HRMS, elemental (CHN) analysis and spectroscopic (UV-Vis, IR and EPR) techniques. Block shaped brown crystals from the methanolic solutions of these oxovanadium(iv) complexes were obtained during the crystallization process. Crystallographic structures of the resulting crystals revealed that the original oxovanadium(iv) complexes have been transformed into new dioxovanadium(v) complexes with concomitant oxidation of VIV to VV. The original oxovanadium(iv) complexes have been identified to be an efficient catalyst for the CO2 cycloaddition reaction with epoxides resulting up to 100% cyclic carbonate products. The geometries of oxovanadium(iv) complexes are optimized by the density functional theory (DFT) calculations at the uB3LYP/6-31G**/LANL2DZ level of theory. The geometry and structural parameters of optimized structures of oxovanadium(iv) complexes are in excellent agreement with the parameters of X-ray structures of their dioxovanadium(v) counterparts. Further, TD-DFT and Spin Density Plots for the oxovanadium(iv) complexes are performed in order to get more insights about their electronic absorption and EPR spectroscopies, respectively.
Collapse
Affiliation(s)
- Rakhimoni Borah
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Naranarayan Deori
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry, Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
10
|
Aomchad V, Del Gobbo S, Yingcharoen P, Poater A, D’Elia V. Exploring the potential of group III salen complexes for the conversion of CO2 under ambient conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Zhang YL, Wang WZ, Wang L, Li LL, Zhang KY, Zhao SD. Poly(propylene carbonate) networks with excellent properties: Terpolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(propylene carbonate) (PPC) is an emerging low-cost biodegradable plastic with potential application in many fields. However, compared with polyolefin plastics, the major limitations of PPC are its poor mechanical and thermal properties. Herein, a thermoplastic PPC containing cross-linked networks, one-pot synthesized by the copolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride, had excellent thermal and mechanical properties and dimensional stability. The weight-average molecular weight and the polymer yield of the PPC5 were up to 212 kg mol−1 and 104 gpolym gcat
−1, respectively. The 5% thermal weight loss temperature reached 320°C, and it could withstand a tensile force of 52 MPa. This cross-linked PPC has excellent properties and is expected to be used under extreme conditions, as the material can withstand strong tension and will not deform.
Collapse
Affiliation(s)
- Yi-Le Zhang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Wen-Zhen Wang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Li Wang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Lei-Lei Li
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Kai-Yue Zhang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Sai-Di Zhao
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| |
Collapse
|
12
|
Zhan F, Wang Z, Wu G, Shi Z, Zhang X, Zuo Q, Lin J, Jiang Y. Highly
Z
‐Selective Synthesis of Highly Substituted 1,3‐Oxathiolane‐2‐imines
via
TfOH‐Catalyzed Formal [3+2] Cycloaddition of Donor‐Acceptor Oxiranes and Isothiocyanates. ChemistrySelect 2021. [DOI: 10.1002/slct.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Feng Zhan
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Zhe Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Guan‐Zheng Wu
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Zhichao Shi
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Xun Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Qinglu Zuo
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Jin‐Shun Lin
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Yuyang Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Souleymanou MY, El‐Ouahabi F, Masdeu‐Bultó AM, Godard C. Cooperative NHC‐based Catalytic System Immobilised onto Carbon Materials for the Cycloaddition of CO
2
to Epoxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Myriam Y. Souleymanou
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Fatima El‐Ouahabi
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Anna M. Masdeu‐Bultó
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Cyril Godard
- Department de Química Física i Inorgànica Universitat Rovira I Virgili C/ Marcel.lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
14
|
Kuznetsova SA, Gorodishch IV, Gak AS, Zherebtsova VV, Gerasimov IS, Medvedev MG, Kitaeva DK, Khakina EA, North M, Belokon YN. Chiral titanium(IV) and vanadium(V) salen complexes as catalysts for carbon dioxide and epoxide coupling reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Schoepff L, Monnereau L, Durot S, Jenni S, Gourlaouen C, Heitz V. A flexible bis‐Co(III) porphyrin cage as a bimetallic catalyst for the conversion of CO
2
and epoxides into cyclic carbonates. ChemCatChem 2020. [DOI: 10.1002/cctc.202001176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laetitia Schoepff
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Laure Monnereau
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Sébastien Jenni
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de chimie de Strasbourg CNRS/UMR 7177 Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
17
|
Fernández-Baeza J, Sánchez-Barba LF, Lara-Sánchez A, Sobrino S, Martínez-Ferrer J, Garcés A, Navarro M, Rodríguez AM. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO 2 Fixation into a Variety of Cyclic Carbonates. Inorg Chem 2020; 59:12422-12430. [PMID: 32811145 DOI: 10.1021/acs.inorgchem.0c01532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new derivatives of the bis(3,5-dimethylpyrazol-1-yl)methane modified by introduction of organosilyl groups on the central carbon atom, one of which bearing a chiral fragment, have been easily prepared. We verified the potential utility of these compounds through the reaction with [Zr(NMe2)4] for the preparation of novel zirconium complexes in which an ancillary bis(pyrazol-1-yl)methanide acts as a robust monoanionic tridentate scorpionate in a κ3-NNC chelating mode, forming strained four-membered heterometallacycles. These κ3-NNC-scorpionate zirconium amides were investigated as catalysts in combination with tetra-n-butylammonium bromide as cocatalyst for CO2 fixation into five-membered cyclic carbonate products. The study has led to the development of an efficient zirconium-based bicomponent system for the selective cycloaddition reaction of CO2 with epoxides. Kinetics investigations confirmed apparent first-order dependence on the catalyst and cocatalyst concentrations. In addition, this system displays very broad substrate scope, including mono- and disubstituted substrates, as well as the challenging biorenewable terpene derived limonene oxide, under mild and solvent-free conditions.
Collapse
Affiliation(s)
- Juan Fernández-Baeza
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Sonia Sobrino
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Jaime Martínez-Ferrer
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| | - Andrés Garcés
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Marta Navarro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus Universitario, 13071-Ciudad Real, Spain
| |
Collapse
|
18
|
Fanjul-Mosteirín N, Martín J, Valdés C, Concellón C, del Amo V. Broadening the Scope of Steroidal Scaffolds: The Umpolung of a Bis-Primary Amine Precatalyst for the Insertion of CO 2 into Epoxides. Org Lett 2020; 22:6988-6992. [DOI: 10.1021/acs.orglett.0c02537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Noé Fanjul-Mosteirín
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Judith Martín
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Carmen Concellón
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Vicente del Amo
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
19
|
Nokhodiyan Isfahani N, Bahadori M, Marandi A, Tangestaninejad S, Moghadam M, Mirkhani V, Beheshti M, Afzali N. Ionic Liquid Modification of Hierarchical ZSM-5 for Solvent-Free Insertion of CO2 to Epoxides. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mehrnaz Bahadori
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Afsaneh Marandi
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Masoud Beheshti
- Department of Chemical Engineering, University of Isfahan, Hezarjirib Street, Isfahan 81746-73441, Iran
| | - Niloufar Afzali
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
20
|
Calmanti R, Selva M, Perosa A. Tungstate ionic liquids as catalysts for CO2 fixation into epoxides. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Wang✶ H, Guo L. Mechanistic Insights into Cycloaddition of CO
2
with Epoxide Catalyzed by a Bimetallic (Salen)Fe(II)Cl
2
Complex with/without a Cocatalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.201904593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hailong Wang✶
- College of Biological, Chemical Sciences and Engineering Jiaxing University, Jiahang Road 118 Jiaxing 314001 People's Republic of China
| | - Liping Guo
- College of Biological, Chemical Sciences and Engineering Jiaxing University, Jiahang Road 118 Jiaxing 314001 People's Republic of China
| |
Collapse
|
22
|
Dai W, Mao P, Liu Y, Zhang S, Li B, Yang L, Luo X, Zou J. Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.10.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Sabet-Sarvestani H, Izadyar M, Eshghi H, Norozi-Shad N. Evaluation and understanding the performances of various derivatives of carbonyl-stabilized phosphonium ylides in CO2 transformation to cyclic carbonates. Phys Chem Chem Phys 2020; 22:223-237. [DOI: 10.1039/c9cp05211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic and mechanism evaluations of the formation of cyclic carbonates by carbonyl-stabilized phosphonium ylides as an efficient and new class of organocatalysts are the main purposes of this research.
Collapse
Affiliation(s)
| | - Mohammad Izadyar
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Hossein Eshghi
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Nazanin Norozi-Shad
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
24
|
Xu Y, Jiao C, Li J, Tian R, Duan Z, Mathey F. An Approach to Peri-Fused Heterocycles: A Metal-Mediated Cascade Carbonylative Cyclization/Dearomatic Diels–Alder Reaction. Org Lett 2019; 21:9512-9515. [DOI: 10.1021/acs.orglett.9b03698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yang Xu
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chenyang Jiao
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Juan Li
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - François Mathey
- College of Chemistry, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
25
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
26
|
Chen J, Gao H, Ding T, Ji L, Zhang JZH, Gao G, Xia F. Mechanistic Studies of CO 2 Cycloaddition Reaction Catalyzed by Amine-Functionalized Ionic Liquids. Front Chem 2019; 7:615. [PMID: 31552229 PMCID: PMC6747045 DOI: 10.3389/fchem.2019.00615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
The homogeneous cycloaddition reaction of CO2 and epichlorohydrin catalyzed by amine-functionalized ionic liquid (AFIL) to yield cyclic carbonate is reported in this study. The AFIL has the dual function of ionic liquid and organic base. The experimental study indicates that AFIL can efficiently catalyze the conversion of CO2 and epichlorohydrin to the product 3-chloro-1,2-propylene. The mechanistic study based on DFT calculations reveals that the imidazolium ring in AFIL primarily catalyzes the ring-opening reaction of epichlorohydrin, while the protonated amine group is responsible for stabilizing the Br− anion in the nucleophilic attack. This study provides a deep insight into the catalytic roles of AFIL and also inspires us to design efficient dual function catalysts for CO2 utilization.
Collapse
Affiliation(s)
- Jian Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Han Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liangzheng Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - John Z H Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
27
|
Yadav N, Seidi F, Crespy D, D'Elia V. Polymers Based on Cyclic Carbonates as Trait d'Union Between Polymer Chemistry and Sustainable CO 2 Utilization. CHEMSUSCHEM 2019; 12:724-754. [PMID: 30565849 DOI: 10.1002/cssc.201802770] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Given the large amount of anthropogenic CO2 emissions, it is advantageous to use CO2 as feedstock for the fabrication of everyday products, such as fuels and materials. An attractive way to use CO2 in the synthesis of polymers is by the formation of five-membered cyclic organic carbonate monomers (5CCs). The sustainability of this synthetic approach is increased by using scaffolds prepared from renewable resources. Indeed, recent years have seen the rise of various types of carbonate syntheses and applications. 5CC monomers are often polymerized with diamines to yield polyhydroxyurethanes (PHU). Foams are developed from this type of polymers; moreover, the additional hydroxyl groups in PHU, absent in classical polyurethanes, lead to coatings with excellent adhesive properties. Furthermore, carbonate groups in polymers offer the possibility of post-functionalization, such as curing reactions under mild conditions. Finally, the polarity of carbonate groups is remarkably high, so polymers with carbonates side-chains can be used as polymer electrolytes in batteries or as conductive membranes. The target of this Review is to highlight the multiple opportunities offered by polymers prepared from and/or containing 5CCs. Firstly, the preparation of several classes of 5CCs is discussed with special focus on the sustainability of the synthetic routes. Thereafter, specific classes of polymers are discussed for which the use and/or presence of carbonate moieties is crucial to impart the targeted properties (foams, adhesives, polymers for energy applications, and other functional materials).
Collapse
Affiliation(s)
- Neha Yadav
- Department of Materials Science and Engineering,School of Molecular Science and Engineering, Vidyasirimedhi institute of Science and Technology, 21210,Payupnai,Wangchan, Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering,School of Molecular Science and Engineering, Vidyasirimedhi institute of Science and Technology, 21210,Payupnai,Wangchan, Rayong, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering,School of Molecular Science and Engineering, Vidyasirimedhi institute of Science and Technology, 21210,Payupnai,Wangchan, Rayong, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering,School of Molecular Science and Engineering, Vidyasirimedhi institute of Science and Technology, 21210,Payupnai,Wangchan, Rayong, Thailand
| |
Collapse
|
28
|
Mondal RK, Riyajuddin S, Ghosh A, Ghosh S, Ghosh K, Islam S. Polymer immobilized [Mg@PS-anthra] complex: An efficient recyclable heterogeneous catalyst for the incorporation of carbon dioxide into oxiranes at atmospheric pressure and Knoevenagel condensation reaction under solvent free condition. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Wu X, Chen C, Guo Z, North M, Whitwood AC. Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04387] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao Wu
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Chentuo Chen
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ziyang Guo
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Michael North
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
30
|
Sirijaraensre J. Mechanistic insights into CO2 cycloaddition of styrene oxide on paddle-wheel metal clusters: a theoretical study. NEW J CHEM 2019. [DOI: 10.1039/c9nj02566a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms for the CO2 cycloaddition of styrene oxide catalyzed by M–BTC clusters have been systematically elucidated by means of the M06-L functional.
Collapse
Affiliation(s)
- Jakkapan Sirijaraensre
- Center for Advanced Studies in Nanotechnology for Chemical
- Food and Agricultural Industries
- Department of Chemistry
- Faculty of Science
- Kasetsart University
| |
Collapse
|
31
|
Wang J, Zhang QY, Xie MS, Wang DC, Qu GR, Guo HM. Cyclization Reaction of Donor-Acceptor Oxiranes with N,N'-Disubstituted Thioureas: A Domino Process to trans-Dihydropyrimidines. Org Lett 2018; 20:6578-6582. [PMID: 30295493 DOI: 10.1021/acs.orglett.8b02930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unprecedented cyclization reaction of donor-acceptor oxiranes with N,N'-disubstituted thioureas to construct trans-dihydropyrimidines is presented. Preliminary reaction mechanism studies demonstrated that the reaction underwent sequential cycloaddition/amine ester exchange/oxygen-sulfur exchange/desulfuration/Michael addition process. A wide range of trans-dihydropyrimidines were produced with high yields up to 94% by using this method.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Qi-Ying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
32
|
Ota Y, Kondoh A, Terada M. Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Seven-Membered Cyclic Ethers from Racemic Diols. Angew Chem Int Ed Engl 2018; 57:13917-13921. [PMID: 30160819 DOI: 10.1002/anie.201808239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/11/2018] [Indexed: 11/09/2022]
Abstract
An enantioconvergent intramolecular Nicholas reaction of racemic diols was developed using BINOL- and SPINOL-derived phosphoric acids as the chiral Brønsted acid catalyst. The developed reaction features an efficient approach to the synthesis of seven-membered cyclic ethers in a highly enantioselective manner. Further derivatization of the enantioenriched cyclic ethers, initiated by the de-complexation of the dicobalt species, afforded densely functionalized cyclic ethers having an unsaturated diester moiety without loss of enantiomeric excess.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
33
|
Ota Y, Kondoh A, Terada M. Enantioselective Intramolecular Nicholas Reaction Catalyzed by Chiral Phosphoric Acid: Enantioconvergent Synthesis of Seven‐Membered Cyclic Ethers from Racemic Diols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yusuke Ota
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Azusa Kondoh
- Research and Analytical Center for Giant MoleculesGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
34
|
Xia L, Wang WZ, Liu S, Jia XG, Zhang YH, Li LL, Wu Y, Su BY, Geng SB, Fan W. New Coordination Complexes Based on the 2,6-bis[1-(Phenylimino)ethyl] Pyridine Ligand: Effective Catalysts for the Synthesis of Propylene Carbonates from Carbon Dioxide and Epoxides. Molecules 2018; 23:molecules23092304. [PMID: 30201888 PMCID: PMC6225293 DOI: 10.3390/molecules23092304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
We aimed to develop new effective catalysts for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. A kind of Mx+LClx coordination complex was fabricated based on the chelating tridentate ligand 2,6-bis[1-(phenylimino)ethyl] pyridine (L). The obtained products were characterized by elemental analysis, infrared spectroscopy, ultraviolet spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. It was found that the catalytic activity of the complexes with different metal ions, the same ligand differed and co-catalyst, where the order of greatest to least catalytic activity was 2 > 3 > 1. The catalytic system composed of complex 2 and DMAP proved to have the better catalytic performance. The yields for complex 2 systems was 86.7% under the reaction conditions of 100 °C, 2.5 MPa, and 4 h. The TOF was 1026 h−1 under the reaction conditions of 200 °C, 2.5 MPa, and 1 h. We also explored the influence of time, pressure, temperature, and reaction substrate concentration on the catalytic reactions. A hypothetical catalytic reaction mechanism is proposed based on density functional theory (DFT) calculations and the catalytic reaction results.
Collapse
Affiliation(s)
- Li Xia
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Wen-Zhen Wang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Xin-Gang Jia
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Ying-Hui Zhang
- Department of Chemistry, Nankai University, TianJin 300071, China.
| | - Lei-Lei Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Ya Wu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Bi-Yun Su
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shu-Bo Geng
- Department of Chemistry, Nankai University, TianJin 300071, China.
| | - Wei Fan
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
35
|
Kuznetsova SA, Rulev YA, Larionov VA, Smol'yakov AF, Zubavichus YV, Maleev VI, Li H, North M, Saghyan AS, Belokon YN. Self‐Assembled Ionic Composites of Negatively Charged Zn(salen) Complexes and Triphenylmethane Derived Polycations as Recyclable Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem 2018. [DOI: 10.1002/cctc.201800908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Svetlana A. Kuznetsova
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
| | - Yuri A. Rulev
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
- Department of Inorganic ChemistryPeople's Friendship University of Russia (RUDN University) Moscow 117198 Russia
| | - Alexander F. Smol'yakov
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
| | | | - Victor I. Maleev
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
| | - Han Li
- Department of Chemistry Green Chemistry Centre of ExcellenceUniversity of York Heslington YO10 5DD UK
| | - Michael North
- Department of Chemistry Green Chemistry Centre of ExcellenceUniversity of York Heslington YO10 5DD UK
| | - Ashot S. Saghyan
- Institute of PharmacyYerevan State University Yerevan 0025 Armenia
| | - Yuri N. Belokon
- Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Moscow 119991 Russia
| |
Collapse
|
36
|
Ghosh S, Bhanja P, Salam N, Khatun R, Bhaumik A, Islam SM. Porous iron-phosphonate nanomaterial as an efficient catalyst for the CO 2 fixation at atmospheric pressure and esterification of biomass-derived levulinic acid. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.05.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Ghosh S, Mondal P, Das D, Tuhina K, Islam SM. Use of PS-Zn-anthra complex as an efficient heterogeneous recyclable catalyst for carbon dioxide fixation reaction at atmospheric pressure and synthesis of dicoumarols under greener pathway. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Dias LD, Carrilho RMB, Henriques CA, Calvete MJF, Masdeu-Bultó AM, Claver C, Rossi LM, Pereira MM. Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO2
into Cyclic Carbonates. ChemCatChem 2018. [DOI: 10.1002/cctc.201800397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lucas D. Dias
- CQC; Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Rui M. B. Carrilho
- CQC; Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - César A. Henriques
- CQC; Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Mário J. F. Calvete
- CQC; Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Anna M. Masdeu-Bultó
- Department of Physical and Inorganic Chemistry; University Rovira i Virgili; Marcel⋅lí Domingo 43007 Tarragona Spain
| | - Carmen Claver
- Department of Physical and Inorganic Chemistry; University Rovira i Virgili; Marcel⋅lí Domingo 43007 Tarragona Spain
- Centre Tecnològic de la Química de Catalunya; Marcel⋅lí Domingo s/n, Campus Sescelades 43007 Tarragona Spain
| | - Liane M. Rossi
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; 05508-000 São Paulo Brasil
| | - Mariette M. Pereira
- CQC; Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|
39
|
Hu YL, Wang HB, Chen ZW, Li XG. Titanium Incorporated Mesoporous Silica Immobilized Functional Ionic Liquid as an Efficient Reusable Catalyst for Cycloaddition of Carbon Dioxide to Epoxides. ChemistrySelect 2018. [DOI: 10.1002/slct.201800984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province, P. R. China
| | - Hong Bo Wang
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province, P. R. China
| | - Zhi Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of PhysicsUniversity of Science and Technology of China Hefei 230026, P. R. China
| | - Xiao Guang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of PhysicsUniversity of Science and Technology of China Hefei 230026, P. R. China
| |
Collapse
|
40
|
Multisite activation of epoxides by recyclable CaI 2 / N -methyldiethanolamine catalyst for CO 2 fixation: A facile access to cyclic carbonates under mild conditions. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kondoh A, Akahira S, Oishi M, Terada M. Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under Brønsted Base Catalysis: Synthesis of 1,3‐Oxazolidines with Quaternary Stereogenic Center. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Shiori Akahira
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masafumi Oishi
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
42
|
Kondoh A, Akahira S, Oishi M, Terada M. Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under Brønsted Base Catalysis: Synthesis of 1,3‐Oxazolidines with Quaternary Stereogenic Center. Angew Chem Int Ed Engl 2018; 57:6299-6303. [DOI: 10.1002/anie.201802468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Shiori Akahira
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masafumi Oishi
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
43
|
Meléndez DO, Lara-Sánchez A, Martínez J, Wu X, Otero A, Castro-Osma JA, North M, Rojas RS. Amidinate Aluminium Complexes as Catalysts for Carbon Dioxide Fixation into Cyclic Carbonates. ChemCatChem 2018. [DOI: 10.1002/cctc.201702014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Danay Osorio Meléndez
- Nucleus Millennium Chemical Processes and Catalysis (CPC); Laboratorio de Química Inorgánica; Facultad de Química; Universidad Católica de Chile; Casilla 306 Santiago-22 6094411 Chile
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica, Orgánica y Bioquímica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Campus Universitario 13071- Ciudad Real Spain
| | - Javier Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Campus Universitario 13071- Ciudad Real Spain
| | - Xiao Wu
- Green Chemistry Centre of Excellence; Department of Chemistry; The University of York; York YO10 5DD UK
| | - Antonio Otero
- Departamento de Química Inorgánica, Orgánica y Bioquímica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Campus Universitario 13071- Ciudad Real Spain
| | - José A. Castro-Osma
- Departamento de Química Inorgánica, Orgánica y Bioquímica; Centro de Innovación en Química Avanzada (ORFEO-CINQA); Facultad de Farmacia; Universidad de Castilla-La Mancha; 02071- Albacete Spain
| | - Michael North
- Green Chemistry Centre of Excellence; Department of Chemistry; The University of York; York YO10 5DD UK
| | - René S. Rojas
- Nucleus Millennium Chemical Processes and Catalysis (CPC); Laboratorio de Química Inorgánica; Facultad de Química; Universidad Católica de Chile; Casilla 306 Santiago-22 6094411 Chile
| |
Collapse
|
44
|
Rehman A, López Fernández AM, Resul MG, Harvey A. Kinetic investigations of styrene carbonate synthesis from styrene oxide and CO2 using a continuous flow tube-in-tube gas-liquid reactor. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Peng J, Yang HJ, Wang S, Ban B, Wei Z, Lei B, Guo CY. Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Ji L, Luo Z, Zhang Y, Wang R, Ji Y, Xia F, Gao G. Imidazolium ionic liquids/organic bases: Efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
James BR, Boissonnault JA, Wong-Foy AG, Matzger AJ, Sanford MS. Structure activity relationships in metal-organic framework catalysts for the continuous flow synthesis of propylene carbonate from CO 2 and propylene oxide. RSC Adv 2018; 8:2132-2137. [PMID: 35542571 PMCID: PMC9077212 DOI: 10.1039/c7ra13245j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022] Open
Abstract
This paper describes the systematic study of metal-organic framework (MOF) catalysts for the reaction of propylene oxide (PO) with carbon dioxide (CO2) to generate propylene carbonate (PC). These studies began with the evaluation of MIL-101(Cr) as catalyst in a flow reactor. Under the developed flow conditions, MIL-101(Cr) was found to effectively catalyze PO carbonation in the absence of a halide co-catalyst. A systematic study of catalyst performance was then undertaken as a function of MOF synthesis technique, activation conditions, metal center, and node architecture. Ultimately, these investigations led to the identification of MIL-100(Sc) as a new, active, and stable catalyst for PO carbonation.
Collapse
Affiliation(s)
- Bryant R James
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| | - Jake A Boissonnault
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| | - Antek G Wong-Foy
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| | - Adam J Matzger
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
- Macromolecular Science & Engineering, College of Engineering, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| |
Collapse
|
48
|
Castro-Osma JA, Martínez J, de la Cruz-Martínez F, Caballero MP, Fernández-Baeza J, Rodríguez-López J, Otero A, Lara-Sánchez A, Tejeda J. Development of hydroxy-containing imidazole organocatalysts for CO2 fixation into cyclic carbonates. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00381e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free catalysts for cyclic carbonates synthesis.
Collapse
Affiliation(s)
- José A. Castro-Osma
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Farmacia
- 02071-Albacete
| | - Javier Martínez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - María P. Caballero
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Juan Fernández-Baeza
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Julián Rodríguez-López
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Antonio Otero
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Juan Tejeda
- Universidad de Castilla-La Mancha
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| |
Collapse
|
49
|
Taheri M, Ghiaci M, Shchukarev A. Cross-linked chitosan with a dicationic ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of carbon dioxide with epoxides into cyclic carbonates. NEW J CHEM 2018. [DOI: 10.1039/c7nj03665e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A dicationc ionic liquid was synthesized and immobilized on chitosan as a catalyst for cycloaddition of CO2 with epoxides for synthesis of cyclic carbonates.
Collapse
Affiliation(s)
- Masoud Taheri
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
- College of Pardis
| | - Mehran Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | | |
Collapse
|
50
|
Samantaray MK, Pump E, Bendjeriou-Sedjerari A, D’Elia V, Pelletier JDA, Guidotti M, Psaro R, Basset JM. Surface organometallic chemistry in heterogeneous catalysis. Chem Soc Rev 2018; 47:8403-8437. [DOI: 10.1039/c8cs00356d] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface organometallic chemistry has been reviewed with a special focus on environmentally relevant transformations (C–H activation, CO2conversion, oxidation).
Collapse
Affiliation(s)
- Manoja K. Samantaray
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | | | - Valerio D’Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology
- WangChan
- Thailand
| | - Jérémie D. A. Pelletier
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| | - Matteo Guidotti
- CNR – Institute of Molecular Sciences and Technologies
- 20133 Milano
- Italy
| | - Rinaldo Psaro
- CNR – Institute of Molecular Sciences and Technologies
- 20133 Milano
- Italy
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC)
- Thuwal
- Saudi Arabia
| |
Collapse
|