1
|
Hasi QM, Yu J, Guo Y, Hu S, Jiang S, Xiao C, Li A, Chen L. Study on photocatalytic degradation and antibacterial properties of conjugated microporous polymers/TiO 2 composite membranes. J Colloid Interface Sci 2025; 679:811-823. [PMID: 39393157 DOI: 10.1016/j.jcis.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Conjugated microporous polymers (CMPs) are widely used in the field of photocatalysis due to their unique conjugated structures and various synthesis methods. Herein, we report the design and synthesis of conjugated microporous polymers hollow spheres (CMPs-HS) superhydrophilic modified by acetylcysteine (CMPs-HS-S) and compounded with the inorganic semiconductor material titanium dioxide (CMPs-HS-S/TiO2) for efficient photocatalytic degradation. To facilitate recycling, the composite membrane material was prepared by combining the materials mentioned above with PVDF membrane. The composite membrane materials had good hydrophilic and photocatalytic properties. Under visible light, the degradation rate of tetracycline (TC) (10 mg/L 180 min) reached 90 %, and the bactericidal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 89 % and 99.99 %, respectively. The efficient photocatalytic performance of the composite membranes could be attributed to the hollow sphere structure of CMPs and the role of TiO2 as a photogenic electron transfer platform. Additionally, the hydrophilicity of the membrane also helped to accelerate the occurrence of photocatalytic reactions. After electron paramagnetic resonance (EPR) detection, h+, 1O2 and O2- were proved to be important reactive substances, which played a major role in degradation. These studies reflect the versatility of CMPs-based photocatalysts and provide a new idea for the future development of CMPs-based photocatalysts.
Collapse
Affiliation(s)
- Qi-Meige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Jiale Yu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Yuyan Guo
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Sanshan Hu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Shuai Jiang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China
| | - Chaohu Xiao
- Center of Experiment, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - An Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730030, PR China.
| | - Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
2
|
Li R, Heuer J, Kuckhoff T, Landfester K, Ferguson CTJ. pH-Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability. Angew Chem Int Ed Engl 2023; 62:e202217652. [PMID: 36749562 DOI: 10.1002/anie.202217652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Pseudo-homogeneous polymeric photocatalysts are an emerging class of highly efficient and tunable photocatalytic materials, where the photocatalytic centers are easily accessible. The creation of highly efficient photocatalytic materials that can be rapidly separated and recovered is one of the critical challenges in photocatalytic chemistry. Here, we describe pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate instantly upon elevation of pH, enabling easy recovery. These responsive photocatalytic polymers can be used in various photocatalytic transformations, including CrVI reduction and photoredox alkylation of indole derivative. Notably, the cationic nature of the photocatalyst accelerates reaction rate of an anionic substrate compared to uncharged species. These photocatalytic particles could be readily recycled allowing multiple successive photocatalytic reactions with no clear loss in activity.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Julian Heuer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Kuckhoff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Li R, Landfester K, Ferguson CTJ. Temperature- and pH-Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angew Chem Int Ed Engl 2022; 61:e202211132. [PMID: 36112056 PMCID: PMC10099588 DOI: 10.1002/anie.202211132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The emergence of heterogeneous photocatalysis has facilitated redox reactions with high efficiency, without compromising the recyclability of the photocatalyst. Recently, stimuli-responsive heterogeneous photocatalytic materials have emerged as a powerful synthetic tool, with simple and rapid recovery, as well as an enhanced dynamic control over reactions. Stimuli-responsive polymers are often inexpensive and easy to produce. They can be switched from an active "on" state to an inert "off" state in response to external stimuli, allowing the production of photocatalyst with adaptability, recyclability, and orthogonal control on different chemical reactions. Despite this versatility, the application of artificial smart material in the field of heterogeneous photocatalysis has not yet been maximized. In this Minireview, we will examine the recent developments of this emerging class of stimuli-responsive heterogeneous photocatalytic systems. We will discuss the synthesis route of appending photoactive components into different triggerable systems and, in particular, the controlled activation and recovery of the materials.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer ResearchMainzGermany
| | | | - Calum T. J. Ferguson
- Department School of ChemistryUniversity of BirminghamBirminghamUK
- Max Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
4
|
Kim S, Landfester K, Ferguson CTJ. Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS NANO 2022; 16:17041-17048. [PMID: 36223132 PMCID: PMC9620398 DOI: 10.1021/acsnano.2c07156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Substrate accessibility is a key limiting factor for the efficiency of heterogeneous photoredox catalysis. Recently, a high photoactive surface area of conjugated microporous polymer nanoparticles (CMP NPs) has made them promising candidates for overcoming the mass transfer limitation to achieve high photocatalytic efficiency. However, this potential has not been realized due to limited dispersibility of CMP NPs in many solvents, particularly in water. Here, we report a polymer grafting strategy that furnishes versatile hairy CMP NPs with enhanced solvent-specific dispersibility. The method associates hundreds of solvent-miscible repeating units with one chain end of the photocatalyst surface, allowing minimal modification to the CMP network that preserves its photocatalytic activity. Therefore, the enhanced dispersibility of hairy CMP NPs in organic solvents or aqueous solutions affords high efficiency in various photocatalytic organic transformations.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United
Kingdom
| |
Collapse
|
5
|
Heuer J, Ferguson CTJ. Photocatalytic polymer nanomaterials for the production of high value compounds. NANOSCALE 2022; 14:1646-1652. [PMID: 35037676 DOI: 10.1039/d1nr06985c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology has provided a platform for producing new photocatalytic materials, where the reduction in length scales has been used to amplify the efficiency of these light active materials. The progression to nano-based photocatalysts has been driven by the increase in surface area that is achieved. Furthermore, nanophotocatalysts based on porous polymers or gel materials are often more active as reagents can more easily partition across the whole photocatalyst. Here, reducing the diffusional path length for substrates across the porous/gel material increases the quantity of accessible active sites in the photocatalytic material. The formation of nanophotocatalytic materials has also enabled the formation of functional nanoparticles that can be used in different conditions traditionally inaccessible to bulk catalysts. Specifically, aqueous compatible nanophotocatalytic materials have been reported, enabling greener reaction conditions and new applications of photocatalysts.
Collapse
Affiliation(s)
- Julian Heuer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
6
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
7
|
Wang Y, Zhang W, Yang Y, Tang J, Pan C, Liu YN, Abu-Reziq R, Yu G. Visible-light-driven Cr(VI) reduction by ferrocene-integrated conjugated porous polymers via dual catalytic routes. Chem Commun (Camb) 2021; 57:4886-4889. [PMID: 33884390 DOI: 10.1039/d1cc01079d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated porous polymers with rapid separation of photogenerated charges and multiple catalytic pathways remain a great challenge. Herein, two ferrocene-based polymers (Fc-CPPs) with high charge separation efficiency and unique dual catalytic routes for Cr(vi) reduction were developed. They exhibited an excellent efficiency, with almost 99% of Cr(vi) readily converted to Cr(iii) under 15 min of visible light illumination (λ > 420 nm).
Collapse
Affiliation(s)
- Yan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Weijie Zhang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yumin Yang
- Northwestern Polytechnical University, Xian 710072, China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Chunyue Pan
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - You-Nian Liu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Raed Abu-Reziq
- Institute of Chemistry, The Hebrew University Jerusalem 9190401, Israel
| | - Guipeng Yu
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Yang L, Peng Y, Luo X, Dan Y, Ye J, Zhou Y, Zou Z. Beyond C 3N 4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chem Soc Rev 2021; 50:2147-2172. [PMID: 33331365 DOI: 10.1039/d0cs00445f] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photocatalysis with stable, efficient and inexpensive metal-free catalysts is one of the most promising options for non-polluting energy production. This review article covers the state-of-the-art development of various effective metal-free polymeric photocatalysts with large π-conjugated units for chemical transformations including water splitting, CO2 and N2 reduction, organic synthesis and monomer polymerisation. The article starts with the catalytic mechanisms of metal-free photocatalysts. Then a particular focus is on the rational manipulation of π-conjugation enlargement, charge separation, electronic structures and band structures in the design of metal-free polymeric photocatalysts. Following the design principles, the selection and construction of functional units are discussed, as well as the connecting bonds and dimensions of π-conjugated polymeric photocatalysts. Finally the hot and emerging applications of metal-free polymeric photocatalysts for photocatalytic chemical transformations are summarized. The strategies provide potential avenues to address the challenges of catalyst activity, selectivity and stability in the further development of highly effective metal-free polymeric photocatalysts.
Collapse
Affiliation(s)
- Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Yuting Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Xuedan Luo
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China.
| | - Jinhua Ye
- Environmental Remediation Materials Unit National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan and TU-NIMS Joint Reseach Center School of Material Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, P. R. China
| | - Yong Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing 210093, P. R. China. and The School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing 210093, P. R. China. and The School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| |
Collapse
|
9
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Dunås P, Murfin LC, Nilsson OJ, Jame N, Lewis SE, Kann N. Azulene Functionalization by Iron-Mediated Addition to a Cyclohexadiene Scaffold. J Org Chem 2020; 85:13453-13465. [PMID: 33085490 PMCID: PMC7660747 DOI: 10.1021/acs.joc.0c01412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The functionalization of azulenes via reaction with cationic η5-iron carbonyl diene complexes under mild reaction conditions is demonstrated. A range of azulenes, including derivatives of naturally occurring guaiazulene, were investigated in reactions with three electrophilic iron complexes of varying electronic properties, affording the desired coupling products in 43-98% yield. The products were examined with UV-vis/fluorescence spectroscopy and showed interesting halochromic properties. Decomplexation and further derivatization of the products provide access to several different classes of 1-substituted azulenes, including a conjugated ketone and a fused tetracycle.
Collapse
Affiliation(s)
- Petter Dunås
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| | - Lloyd C. Murfin
- Department
of Chemistry, University of Bath, Convocation Avenue, Bath BA2 7AY, U.K.
| | - Oscar J. Nilsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicolas Jame
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| | - Simon E. Lewis
- Centre
for Sustainable Circular Technologies, University
of Bath, Convocation Avenue, Bath BA2 7AY, U.K.
- Department
of Chemistry, University of Bath, Convocation Avenue, Bath BA2 7AY, U.K.
| | - Nina Kann
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Modulating the Properties of Azulene‐containing Polymers Through Functionalization at the 2‐Position of Azulene. Chem Asian J 2020; 15:2505-2512. [DOI: 10.1002/asia.202000627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Indexed: 11/07/2022]
|
12
|
Affiliation(s)
- Zhuang Mao Png
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck Lip Dexter Tam
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
13
|
Abstract
Azulene, a unique isomer of naphthalene, has received much interest from researchers in different fields due to its unusual chemical structure with a negatively charged 5-membered ring fused with a positively charged 7-membered ring. In particular, incorporation of azulene into polymers has led to many interesting properties. This minireview covers functionalization methods of azulene at its various positions of 5- and 7-membered rings to form azulene derivatives including azulene monomers, and gives an overview of a wide range of azulene-containing polymers including poly(1,3-azulene), azulene-based copolymers with connectivity at 1,3-positions of the 5-membered ring, or 4,7-positions of the 7-membered ring, as well as copolymers with azulene units as side chains. Their chemical and physical properties together with applications of azulene-containing polymers have also been summarized.
Collapse
Affiliation(s)
- Hui Ning Zeng
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
15
|
Chakraborty J, Nath I, Song S, Mohamed S, Khan A, Heynderickx PM, Verpoort F. Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ferguson CTJ, Huber N, Landfester K, Zhang KAI. Dual-Responsive Photocatalytic Polymer Nanogels. Angew Chem Int Ed Engl 2019; 58:10567-10571. [PMID: 31066484 DOI: 10.1002/anie.201903309] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Indexed: 01/17/2023]
Abstract
Selective activation of photocatalysts under constant light conditions has recently been targeted to produce multi-responsive systems. However, controlled activation, with easy recovery of the photocatalysts, induced by external stimuli remains a major challenge. Mimicking the responsiveness of biological systems to multiple triggers can offer a promising solution. Herein, we report dual-responsive polymer photocatalysts in the form of nanogels consisting of a cross-linked poly-N-isopropylacrylamide nanogel, copolymerised with a photocatalytically active monomer. The dual-responsive polymer nanogels undergo a stark decrease in diameter with increasing temperature, which shields the photocatalytic sites, decreasing the activity. Temperature-dependent photocatalytic formation of NAD+ in water demonstrates the ability to switch photocatalysis on and off. Moreover, the photocatalysed syntheses of several fine chemicals were carried out to demonstrate the utility of the designed material.
Collapse
Affiliation(s)
- Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Niklas Huber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kai A I Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| |
Collapse
|
17
|
|
18
|
Poly[1,3,6,8-tetra(2-thiophenyl)pyrene] and poly[1,3,6,8-tetra(3-thiophenyl)pyrene] conjugated microporous polymers for reversible adsorbing and fluorescent sensing iodine. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Wu M, Han Y, Wang B, Yuan Y, Xing C, Chen Y. S,N-Heteroacene-Based Conjugated Microporous Polymers as Fluorescent Sensors and Effective Antimicrobial Carriers. ACS APPLIED BIO MATERIALS 2018; 1:473-479. [DOI: 10.1021/acsabm.8b00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mengjiao Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Bo Wang
- Hebei Province Key Laboratory of Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Chengfen Xing
- Hebei Province Key Laboratory of Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
20
|
Li R, Byun J, Huang W, Ayed C, Wang L, Zhang KAI. Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00407] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Run Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jeehye Byun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wei Huang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Cyrine Ayed
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lei Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
21
|
Byun J, Huang W, Wang D, Li R, Zhang KAI. CO2
-ausgelöste schaltbare Hydrophilie von heterogen konjugierten Polymerphotokatalysatoren für verbesserte katalytische Aktivität in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jeehye Byun
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Wei Huang
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Di Wang
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Run Li
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kai A. I. Zhang
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
22
|
Byun J, Huang W, Wang D, Li R, Zhang KAI. CO2
-Triggered Switchable Hydrophilicity of a Heterogeneous Conjugated Polymer Photocatalyst for Enhanced Catalytic Activity in Water. Angew Chem Int Ed Engl 2018; 57:2967-2971. [DOI: 10.1002/anie.201711773] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Jeehye Byun
- Max Planck institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Wei Huang
- Max Planck institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Di Wang
- Max Planck institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Run Li
- Max Planck institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
23
|
Kim JG, Cha MC, Lee J, Choi T, Chang JY. Preparation of a Sulfur-Functionalized Microporous Polymer Sponge and In Situ Growth of Silver Nanoparticles: A Compressible Monolithic Catalyst. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38081-38088. [PMID: 28994573 DOI: 10.1021/acsami.7b14807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a compressible monolithic catalyst based on a microporous organic polymer (MOP) sponge. The monolithic MOP sponge was synthesized via Sonogashira-Hagihara coupling reaction between 1,4-diiodotetrafluorobenzene and 1,3,5-triethynylbenzene in a cosolvent of toluene and TEA (2:1, v/v) without stirring. The MOP sponge had an intriguing microstructure, where tubular polymer fibers having a diameter of hundreds of nanometers were entangled. It showed hierarchical porosity with a Brunauer-Emmett-Teller (BET) surface area of 512 m2 g-1. The MOP sponge was functionalized with sulfur groups by the thiol-yne reaction. The functionalized MOP sponge exhibited a higher BET surface area than the MOP sponge by 13% due to the increase in the total pore and micropore volumes. A MOP sponge-Ag heterogeneous catalyst (S-MOPS-Ag) was prepared by in situ growth of silver nanoparticles inside the sulfur-functionalized MOP sponge by the reduction of Ag+ ions. The catalytic activity of S-MOPS-Ag was investigated for the reduction reaction of 4-nitrophenol in an aqueous condition. When S-MOPS-Ag was compressed and released during the reaction, the rate of the reaction was considerably increased. S-MOPS-Ag was easily removed from the reaction mixture owing to its monolithic character and was reused after washing and drying.
Collapse
Affiliation(s)
- Jong Gil Kim
- Department of Materials Science and Engineering, College of Engineering, Seoul National University , Seoul 08826, Korea
| | - Min Chul Cha
- Department of Materials Science and Engineering, College of Engineering, Seoul National University , Seoul 08826, Korea
| | - Jeongmin Lee
- Department of Materials Science and Engineering, College of Engineering, Seoul National University , Seoul 08826, Korea
| | - Taejin Choi
- Department of Materials Science and Engineering, College of Engineering, Seoul National University , Seoul 08826, Korea
| | - Ji Young Chang
- Department of Materials Science and Engineering, College of Engineering, Seoul National University , Seoul 08826, Korea
| |
Collapse
|
24
|
Ghasimi S, Bretschneider SA, Huang W, Landfester K, Zhang KAI. A Conjugated Microporous Polymer for Palladium-Free, Visible Light-Promoted Photocatalytic Stille-Type Coupling Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700101. [PMID: 28852627 PMCID: PMC5566346 DOI: 10.1002/advs.201700101] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/27/2017] [Indexed: 06/07/2023]
Abstract
The Stille coupling reaction is a versatile method to mainly form aromatic C-C bonds. However, up to now, the use of palladium catalysts is necessary. Here, a palladium-free and photocatalytic Stille-type coupling reaction of aryl iodides and aryl stannanes catalyzing a conjugated microporous polymer-based phototcatalyst under visible light irradiation at room temperature is reported. The novel coupling reaction mechanism occurs between the photogenerated aryl radical under oxidative destannylation of the aryl stannane, and the electron-activated aryl iodide, resulting into the aromatic C-C bond formation reaction. The visible light-promoted Stille-type coupling reaction using the polymer-based pure organic photocatalyst offers a simple, sustainable, and more economic synthetic pathway toward palladium-free aromatic C-C bond formation.
Collapse
Affiliation(s)
- Saman Ghasimi
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | | | - Wei Huang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | | | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
25
|
Park J. Visible and near infrared light active photocatalysis based on conjugated polymers. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Székely A, Péter Á, Aradi K, Tolnai GL, Novák Z. Gold-Catalyzed Direct Alkynylation of Azulenes. Org Lett 2017; 19:954-957. [DOI: 10.1021/acs.orglett.7b00259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Székely
- MTA-ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Eötvös Loránd University, Institute of Chemistry Pázmány Péter
stny. 1/A, Budapest, 1117, Hungary
| | - Áron Péter
- MTA-ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Eötvös Loránd University, Institute of Chemistry Pázmány Péter
stny. 1/A, Budapest, 1117, Hungary
| | - Klára Aradi
- MTA-ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Eötvös Loránd University, Institute of Chemistry Pázmány Péter
stny. 1/A, Budapest, 1117, Hungary
| | - Gergely L. Tolnai
- Eötvös Loránd University, Institute of Chemistry, Pázmány Péter
stny. 1/A, Budapest, 1117, Hungary
| | - Zoltán Novák
- MTA-ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Eötvös Loránd University, Institute of Chemistry Pázmány Péter
stny. 1/A, Budapest, 1117, Hungary
| |
Collapse
|