Klausfelder B, Blach P, de Jonge N, Kempe R. Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization.
Chemistry 2022;
28:e202201307. [PMID:
35638452 PMCID:
PMC9545131 DOI:
10.1002/chem.202201307]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Syntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. We report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones. The latter are easily accessible from three components: a ketone, an aldehyde and a nitroalkane. Our reaction has a broad scope and 23 of the 33 products synthesized are compounds which have not yet been reported. The key to the general hydrogenation/cyclization reaction is a highly active, selective and reusable nickel catalyst, which was identified from a library of 24 earth-abundant metal catalysts.
Collapse