1
|
Jiang W, He D, Ma X, Zhou H, Wu Y. Electrochemical-Thermochemical Cascade System for the Sustainable Conversion of Crude Acetylene to C 6+ Esters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504360. [PMID: 40289442 DOI: 10.1002/smll.202504360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Acetylene (C2H2), a critical chemical feedstock derived from natural gas or coal, faces sustainability challenges due to high CO₂ emissions from conventional production methods. These emissions not only contribute to carbon footprints but also hinder the upgrading of C2H2. Herein, a two-step electrochemical and thermochemical cascade system that directly converts CO₂-contaminated crude acetylene into C6+ esters is proposed. In the first step, CO₂ from crude acetylene is captured by hydroxide to form bicarbonate, which is subsequently released in situ at the cathode under electrolysis. Using a Ni single-atom catalyst, CO is efficiently generated with a Faradaic efficiency of 97.8 ± 0.84% at 100 mA cm-2. The generated CO then reacts with acetylene in the second step, where a Pd-based catalyst enables the production of dimethyl butenedioate at 7.83 ± 0.31 mmol L-1 h-1 and selective dimethyl maleate synthesis (>65% selectivity). Furthermore, replacing methanol with ethanol or butanol in the carbonylation step allows for tunable synthesis of diethyl or dibutyl butenedioate, demonstrating broad applicability. Techno-economic analysis indicates a 46.9% cost reduction compared to the traditional reverse water-gas shift system, attributed to lower energy demands and eliminated separation steps. This work provides a green strategy for valorizing low-value acetylene streams while mitigating CO₂ emissions.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Dayin He
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Xianhui Ma
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Sim H, Kang SW. Innovative eco-friendly hydroxyethylcellulose matrix-based composite for enhanced gas separation: Insights from performance and structural characterization. Int J Biol Macromol 2024; 271:132576. [PMID: 38788883 DOI: 10.1016/j.ijbiomac.2024.132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
With increasing concern for the environment, the demand for carbon dioxide separation, a key contributor to global warming, has escalated. Therefore, this paper focuses on carbon dioxide separation by creating an hydroxyethyl cellulose (HEC)(C2H6O2)x*(C6H7O2(OH)3)n/silver tetra fluoroborate (AgBF4)/aluminum nitrate (Al(NO3)3) composite film, demonstrating excellent separation performance with a permeance of 1.0 GPU and a selectivity of 100. Silver ions enhance the solubility of carbon dioxide, aiding in its separation, and we determined the optimal aluminum composition to stabilize the silver ions. To analyze this, we examined the cross-sections using SEM, confirming a selective layer of 1.7 μm for carbon dioxide separation. Furthermore, TGA, FT-IR, and NMR analyses were conducted to investigate the interaction between the polymer and additives. This revealed that the increased polymer chain due to the interaction between Ag and HEC, along with stabilized Ag facilitated by the addition of Al, maximized the interaction with carbon dioxide via the empty s-orbital. Additionally, SEM-EDX, UV-vis, XRD, XPS analyses were employed to elucidate the movement of ions within the membrane. These results provide insights into the performance of membranes based on cellulose polymer and offer valuable insights for future applications in gas separation technologies.
Collapse
Affiliation(s)
- Hyojeong Sim
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
3
|
Ignatusha P, Lin H, Kapuscinsky N, Scoles L, Ma W, Patarachao B, Du N. Membrane Separation Technology in Direct Air Capture. MEMBRANES 2024; 14:30. [PMID: 38392657 PMCID: PMC10889985 DOI: 10.3390/membranes14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Direct air capture (DAC) is an emerging negative CO2 emission technology that aims to introduce a feasible method for CO2 capture from the atmosphere. Unlike carbon capture from point sources, which deals with flue gas at high CO2 concentrations, carbon capture directly from the atmosphere has proved difficult due to the low CO2 concentration in ambient air. Current DAC technologies mainly consider sorbent-based systems; however, membrane technology can be considered a promising DAC approach since it provides several advantages, e.g., lower energy and operational costs, less environmental footprint, and more potential for small-scale ubiquitous installations. Several recent advancements in validating the feasibility of highly permeable gas separation membrane fabrication and system design show that membrane-based direct air capture (m-DAC) could be a complementary approach to sorbent-based DAC, e.g., as part of a hybrid system design that incorporates other DAC technologies (e.g., solvent or sorbent-based DAC). In this article, the ongoing research and DAC application attempts via membrane separation have been reviewed. The reported membrane materials that could potentially be used for m-DAC are summarized. In addition, the future direction of m-DAC development is discussed, which could provide perspective and encourage new researchers' further work in the field of m-DAC.
Collapse
Affiliation(s)
- Pavlo Ignatusha
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Noe Kapuscinsky
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ludmila Scoles
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Weiguo Ma
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Bussaraporn Patarachao
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Naiying Du
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| |
Collapse
|
4
|
Saif-ur-Rehman, Shozab Mehdi M, Fakhar-e-Alam M, Asif M, Rehman J, A. Alshgari R, Jamal M, Uz Zaman S, Umar M, Rafiq S, Muhammad N, Fawad JB, Shafiee SA. Deep Eutectic Solvent Coated Cerium Oxide Nanoparticles Based Polysulfone Membrane to Mitigate Environmental Toxicology. Molecules 2023; 28:7162. [PMID: 37894641 PMCID: PMC10609010 DOI: 10.3390/molecules28207162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP's surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% and 8% filler loadings were fabricated using solution casting technique. The characterizations of SEM, FTIR and TGA of synthesized membranes were performed. SEM represented the surface and cross-sectional morphology of membranes, which indicated that the filler is uniformly dispersed in the polysulfone. FTIR was used to analyze the interaction between the filler and support, which showed there was no reaction between the polymer and DES-ceria NPs as all the peaks were consistent, and TGA provided the variation in the membrane materials with respect to temperature, which categorized all of the membranes as very stable and showed that the trend of stability increases with respect to DES-ceria NPs filler loading. For the evaluation of efficiency of the MMMs, the gas permeation was tested. The permeability of CO2 was improved in comparison with the pristine Polysulfone (PSF) membrane and enhanced selectivities of 35.43 (αCO2/CH4) and 39.3 (αCO2/N2) were found. Hence, the DES-ceria NP-based MMMs proved useful in mitigating CO2 from a gaseous mixture.
Collapse
Affiliation(s)
- Saif-ur-Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Punjab, Pakistan; (M.J.); (J.b.F.)
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Punjab, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Khyber Pakhtunkhwa, Pakistan; (S.U.Z.); (M.U.)
| | - Muhammad Fakhar-e-Alam
- Department of Physics, GC University Faisalabad, Faisalabad 38000, Punjab, Pakistan; (M.F.-e.-A.); (M.A.)
| | - Muhammad Asif
- Department of Physics, GC University Faisalabad, Faisalabad 38000, Punjab, Pakistan; (M.F.-e.-A.); (M.A.)
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
- Department of Chemistry, Kulliyyah of Science, International Islamic University, Malaysia, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia;
- MEU Research Unit, Middle East University, Amman 541350, Jordan
| | - Razan A. Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muddasar Jamal
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Punjab, Pakistan; (M.J.); (J.b.F.)
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Punjab, Pakistan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Khyber Pakhtunkhwa, Pakistan; (S.U.Z.); (M.U.)
| | - Muhammad Umar
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23460, Khyber Pakhtunkhwa, Pakistan; (S.U.Z.); (M.U.)
| | - Sikander Rafiq
- Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Lahore 39161, Punjab, Pakistan;
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan;
| | - Junaid bin Fawad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Punjab, Pakistan; (M.J.); (J.b.F.)
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University, Malaysia, Jalan Sultan Ahmad Shah, Kuantan 25200, Pahang, Malaysia;
| |
Collapse
|
5
|
Hong YW, Laysandra L, Chiu YC, Kang DY. Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37411032 DOI: 10.1021/acsami.3c06518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.
Collapse
Affiliation(s)
- Yao-Wei Hong
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 106335, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Chen Y, Abed AM, Faisal Raheem AB, Altamimi AS, Yasin Y, Abdi Sheekhoo W, Fadhil Smaisim G, Ali Ghabra A, Ahmed Naseer N. Current advancements towards the use of nanofluids in the reduction of CO2 emission to the atmosphere. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Li S, Zhang K, Liu C, Feng X, Wang P, Wang S. Nanohybrid Pebax/PEGDA-GPTMS membrane with semi-interpenetrating network structure for enhanced CO2 separations. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
8
|
Ren Y, He D, Wang T, Qi H. AEffect of ZIF-7 doping content on H2/CO2 separation performance of 1,2-bis(triethoxysilyl)ethane-derived organosilica membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Lee J, Sohn H, Kang SW. Surface of CuO Nanoparticles Modified by p-Benzoquinone for N 2-Selective Membrane. MEMBRANES 2022; 12:1229. [PMID: 36557136 PMCID: PMC9787012 DOI: 10.3390/membranes12121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this study, CuO nanoparticles and p-benzoquinone (p-BQ) were added to a polyvinylpyrrolidone (PVP) matrix to increase N2/CO2 selectivity. The added p-BQ allowed CuO to be distributed in a uniform size in the PVP/CuO composite membrane and the matrix to be flexible by forming the interaction with PVP. The surface modification of CuO by p-BQ and the well-dispersed size affected the increase in the separation performance. The PVP/CuO/p-BQ composite membranes showed an N2/CO2 selectivity of about 23.1 with N2 permeance of about 13.3 GPU, while the separation performance of PVP was not observed. The enhanced separation performance is attributable to the surface of CuO nanoparticles modified by p-BQ inducing CO2 molecules to be relatively slowly transported by the adsorption properties in the polymer matrix. The chemical properties and coordinative interaction for PVP/CuO/p-BQ composite membrane were measured by FT-IR spectroscopy, thermogravimetric analysis, UV-vis, scanning electron microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy.
Collapse
Affiliation(s)
- Juyeong Lee
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
10
|
Lotus seed pot-derived nitrogen enriched porous carbon for CO2 capture application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
The experimental/theoretical study over the effect of using the POP-NH2 nanostructures into the membrane selective layer on the CO2 permeability and selectivity. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hong T, Li Y, Wang S, Li Y, Jing X. Polyurethane-based gas separation membranes: A review and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Anggarini U, Yu L, Nagasawa H, Kanezashi M, Tsuru T. Metal-Induced Aminosilica Rigidity Improves Highly Permeable Microporous Membranes via Different Types of Pendant Precursors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42692-42704. [PMID: 36073015 DOI: 10.1021/acsami.2c11588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, nickel-doped aminosilica membranes containing pendant groups were prepared with 3-aminopropyltriethoxysilane (APTES), trimethoxy[3-(methylamino)propyl]silane (MAPTS), 3 N,N-dimethyl aminopropyltrimethoxysilane (DAPTMS), N-[3-(trimethoxysilylpropyl]ethylene diamine (TMSPED), and 1-[3-(trimethoxysilyl)propyl] urea (TMSPU). Differences in the structures of terminal amine ligands significantly contributed to the formation of a coordinated structural assembly. Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and N2 adsorption isotherms revealed that short and rigid pendant amino groups successfully coordinated with nickel to produce subnanopores in the membranes, while an ion-exchange interaction was suggested for longer and sterically hindered aminosilica precursors. Moreover, the basicity of amine precursors affected the affinity of ligands for the development of a coordinated network. A pristine aminosilica membrane showed low levels of H2 permeance that range from 0.1 to 0.5 × 10-6 mol m-2 s-1 Pa-1 with a H2/N2 permeance ratio that ranges from 15 to 100. On the contrary, nickel coordination increased the H2 permeance to 0.1-3.0 × 10-6 mol m-2 s-1 Pa-1 with H2/N2 permeance ratios that range from 10 to 68, which indicates the formation of a microporous structure and enlargement of pore sizes. The strong level of coordination affinity between nickel ions and amine groups induced rearrangement of the flexible pendant chain into a more rigid structure.
Collapse
Affiliation(s)
- Ufafa Anggarini
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
- Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Kompleks PT. Semen Indonesia (Persero) Tbk., Jln. Veteran, Gresik, 61122 East Java, Indonesia
| | - Liang Yu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hiroki Nagasawa
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Masakoto Kanezashi
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Toshinori Tsuru
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
14
|
High-performance CO2 separation membranes: comparison of graphene oxide and carboxylated graphene oxide nanofillers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Hassanzadeh H, Abedini R, Ghorbani M. CO 2 Separation over N 2 and CH 4 Light Gases in Sorbitol-Modified Poly(ether- block-amide) (Pebax 2533) Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hossein Hassanzadeh
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Reza Abedini
- Enhanced Oil Recovery (EOR) and Gas Processing Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| | - Mohsen Ghorbani
- Polymer Research Lab, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 4714873113 Babol, Iran
| |
Collapse
|
16
|
Rahimalimamaghani A, Pacheco Tanaka DA, Llosa Tanco MA, Neira D’Angelo MF, Gallucci F. Ultra-Selective CMSMs Derived from Resorcinol-Formaldehyde Resin for CO 2 Separation. MEMBRANES 2022; 12:847. [PMID: 36135865 PMCID: PMC9502337 DOI: 10.3390/membranes12090847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
A resorcinol-formaldehyde precursor was synthesized to fabricate the CO2 selective Carbon Molecular Sieve Membranes (CMSMs) developed in this study. The degree of polymerization (DP) was analyzed via Gel Permeation Chromatography (GPC) and its effect on the CO2/N2 perm-selectivity and CO2 permeance was investigated. The membrane that was polymerized at 80 °C (named R80) was selected as the best performing CMSM after a preliminary test. The post treatment with oxidative atmosphere was performed to increase the CO2 permeance and CO2/N2 perm-selectivity on membrane R80. The gas permeation results and Pore Size Distribution (PSD) measurements via perm-porometry resulted in selecting the membrane with an 80 °C polymerization temperature, 100 min of post treatment in 6 bar pressure and 120 °C with an oxygen concentration of 10% (named R80T100) as the optimum for enhancing the performance of CMSMs. The 3D laser confocal microscopy results confirmed the reduction in the surface roughness in post treatment on CMSMs and the optimum timing of 100 min in the treatment. CMSM R80T100 exhibiting CO2/N2 ideal selectivity of 194 at 100 °C with a CO2 permeability of 4718 barrier was performed higher than Robeson's upper bound limit for polymeric membranes and also the other CMSMs fabricated in this work.
Collapse
Affiliation(s)
- Arash Rahimalimamaghani
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - David Alfredo Pacheco Tanaka
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Margot A. Llosa Tanco
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Maria Fernanda Neira D’Angelo
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Fausto Gallucci
- Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven Institute for Renewable Energy Systems (EIRES), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
17
|
CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Pore engineering of MOFs through in-situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Kim BJ, Kang SW. Composites of poly(vinyl pyrrolidone) and polarized Ag nanoparticles for CO2 separation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Wang D, Wang Q, Zheng W, Dai Y, Ruan X, Li X, He G. Regulating Cutoff Size of Metal–Organic Frameworks by In Situ Anchoring of Poly(ethylene glycol) to Boost CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongyue Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Qiuchen Wang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wenji Zheng
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Yan Dai
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, Liaoning, China
| |
Collapse
|
21
|
High-Temperature CO2 Capture Using Regenerable Ca-Mg-based Sorbents Derived from Natural Minerals: Huntite, Hydromagnesite, and Magnesite. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. ENERGIES 2022. [DOI: 10.3390/en15082940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In line with the low-carbon strategy, the EU is expected to be climate-neutral by 2050, which would require a significant increase in renewable energy production. Produced biogas is directly used to produce electricity and heat, or it can be upgraded to reach the “renewable natural gas”, i.e., biomethane. This paper reviews the applied production technology and current state of biogas and biomethane production in Europe. Germany, UK, Italy and France are the leaders in biogas production in Europe. Biogas from AD processes is most represented in total biogas production (84%). Germany is deserving for the majority (52%) of AD biogas in the EU, while landfill gas production is well represented in the UK (43%). Biogas from sewage sludge is poorly presented by less than 5% in total biogas quantities produced in the EU. Biomethane facilities will reach a production of 32 TWh in 2020 in Europe. There are currently 18 countries producing biomethane (Germany and France with highest share). Most of the European plants use agricultural substrate (28%), while the second position refers to energy crop feedstock (25%). Sewage sludge facilities participate with 14% in the EU, mostly applied in Sweden. Membrane separation is the most used upgrading technology, applied at around 35% of biomethane plants. High energy prices today, and even higher in the future, give space for the wider acceptance of biomethane use.
Collapse
|
23
|
Lee M, Lee G, Jeong Y, Oh WJ, Yeo JG, Lee JH, Choi J. Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Bermeo M, Vega LF, Abu-Zahra MRM, Khaleel M. Critical assessment of the performance of next-generation carbon-based adsorbents for CO 2 capture focused on their structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151720. [PMID: 34861307 DOI: 10.1016/j.scitotenv.2021.151720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO2 capture. Post-combustion CO2 capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m2 g-1 and micropore volumes of ca. 1.7 cm3 g-1) and their versatility for surface functionalization. These materials have demonstrated remarkable CO2 adsorption capacities and CO2/N2 selectivities up to ca. 5 mmol g-1 and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol-1. Herein, a review of the advances in preparation of ZTCs and MDCs for CO2 capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO2 adsorption, including CO2 uptake, CO2/N2 selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vmicrox N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO2 uptake. Despite their promising performance in CO2 uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.
Collapse
Affiliation(s)
- Marie Bermeo
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohammad R M Abu-Zahra
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Maryam Khaleel
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
25
|
Castruita‐de León G, Montes‐Luna ÁDJ, Yeverino‐Miranda CY, Alvarado‐Tenorio G, Meléndez‐Ortiz HI, Pérez‐Camacho O, García‐Cerda LA. Preparation of polybenzimidazole‐based mixed matrix membranes containing
modified‐COK
‐12 mesoporous silica and evaluation of the mixed‐gas separation performance. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ángel de Jesús Montes‐Luna
- Centro de Investigación Científica de Yucatán A.C. Unidad de Materiales Mérida Mexico
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | | | | | | - Odilia Pérez‐Camacho
- Centro de Investigacián en Química Aplicada, Saltillo Coahuila Unidad de Materiales Mexico
| | | |
Collapse
|
26
|
|
27
|
Lin Y, Li Y, Cao Y, Wang X. Two-dimensional MOFs: Design & Synthesis and Applications. Chem Asian J 2021; 16:3281-3298. [PMID: 34453404 DOI: 10.1002/asia.202100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Indexed: 12/24/2022]
Abstract
For the past few years, two-dimensional materials have attracted widespread attention owing to their special properties and potential applications. It is well-known that graphene, transition metal disulfide compounds (TMDC), carbon nitride, transition metal carbonitrides (Mxenes), silene and hexagonal boron nitride are typical two-dimensional materials. Compared with these traditional two-dimensional materials, two-dimensional MOF is favored by numerous researchers because of its unique structure. Based on the unique metal ion and organic ligand coordination of MOF and two-dimensional layered structure, the applications of two-dimensional MOF were getting serious, including catalysis, supercapacitor, gas adsorption/separation, sensors and so on. This review presents a relatively comprehensive summary of the design & synthesis and applications of two-dimensional MOF over the past few years. Furthermore, the opportunities and challenges have been discussed to supply a promising prospect to this field.
Collapse
Affiliation(s)
- Yuting Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yuehua Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|
28
|
Abstract
The transport sector powered by internal combustion engines (ICE) requires novel approaches to achieve near-zero CO2 emissions. In this direction, using CO2 capture and storage (CCS) systems onboard could be a good option. However, CO2 capture in mobile sources is currently challenging due to the operational and space requirements to install a CCS system onboard. This paper presents a systematic review of the CO2 capture in ICE driven transport to know the methods, techniques, and results of the different studies published so far. Subsequently, a case study of a CCS system working in an ICE is presented, where the energy and space needs are evaluated. The review reveals that the most suitable technique for CO2 capture is temperature swing adsorption (TSA). Moreover, the sorbents with better properties for this task are PPN-6-CH2-DETA and MOF-74-Mg. Finally, it shows that it is necessary to supply the energy demand of the CCS system and the option is to take advantage of the waste heat in the flue gas. The case study shows that it is possible to have a carbon capture rate above 68% without affecting engine performance. It was also found that the total volume required by the CCS system and fuel tank is 3.75 times smaller than buses operating with hydrogen fuel cells. According to the review and the case study, it is possible to run a CCS system in the maritime sector and road freight transport.
Collapse
|
29
|
Galiano F, Mancuso R, Guazzelli L, Mauri M, Chiappe C, Simonutti R, Brunetti A, Pomelli CS, Barbieri G, Gabriele B, Figoli A. Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Lopes TJ, Benincá C, Zanoelo EF, Grande CA, da Silva Lopes FV, Moreira RDFPM, Quadri MB, Rodrigues AE. CO2 capture by ethanolamines functionalized resins: amination and kinetics of adsorption in a fixed bed. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Layer-by-Layer (LbL) Surface Augmented Modification of Poly(Styrene/Divinylbenzene)High Internal Phase Emulsion for Carbon Dioxide Capture. Polymers (Basel) 2021; 13:polym13142247. [PMID: 34301005 PMCID: PMC8309290 DOI: 10.3390/polym13142247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we used amines electrolyte solution with layer-by-layer (LbL) technique to modify and increase the CO2 adsorption capacity of highly porous polymer from high internal phase emulsion template polymer. This perspective presents the extraordinary versatility of emulsion templating polymerization, which has emerged with the growing numbers of HIPE systems and modification. In this study, we used polyHIPE prepared from styrene (S) and divinylbenzene (DVB) with varying ratios; 80:20, 20:80, and 0:100 to improve the surface area, thermal properties, and mechanical properties of the materials. Furthermore, the surface of the polyHIPE was modified by LbL technique to increase the adsorption efficiency. This technique consisted of two main layers, the primary layer of poly(diallyldimethylammonium chloride) (PDADMAC) and polystyrene sulfonate (PSS) and the secondary layer, which was the CO2 adsorbing layer, of polyethylene imine (PEI) or tetraethylene pentamine (TEPA). Poly(S/DVB)HIPE modified by PEI terminated as the secondary coating showed the highest CO2 adsorption capacity, with up to 42% (from 0.71 to 1.01 mmol/g). The amine-multilayered modified material still possessed an open cell structure, since the solution did not block the pore structure of the poly(S/DVB)HIPE and was suitable for being used as an adsorbent in adsorption technology.
Collapse
|
33
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
34
|
The prospect of synthesis of PES/PEG blend membranes using blend NMP/DMF for CO2/N2 separation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractCarbon dioxide (CO2) emissions have been the root cause for anthropogenic climate change. Decarbonisation strategies, particularly carbon capture and storage (CCS) are crucial for mitigating the risk of global warming. Among all current CO2 separation technologies, membrane separation has the biggest potential for CCS as it is inexpensive, highly efficient, and simple to operate. Polymeric membranes are the preferred choice for the gas separation industry due to simpler methods of fabrication and lower costs compared to inorganic or mixed matrix membranes (MMMs). However, plasticisation and upper-bound trade-off between selectivity and permeability has limited the gas separation performance of polymeric membranes. Recently, researchers have found that the blending of glassy and rubbery polymers can effectively minimise trade-off between selectivity and permeability. Glassy poly(ethersulfone) (PES) and rubbery poly(ethylene) glycol (PEG) are polymers that are known to have a high affinity towards CO2. In this paper, PEG and PES are reviewed as potential polymer blend that can yield a final membrane with high CO2 permeance and CO2/nitrogen (N2) selectivity. Gas separation properties can be enhanced by using different solvents in the phase-inversion process. N-Methyl-2-Pyrrolidone (NMP) and Dimethylformamide (DMF) are common industrial solvents used for membrane fabrication. Both NMP and DMF are reviewed as prospective solvent blend that can improve the morphology and separation properties of PES/PEG blend membranes due to their effects on the membrane structure which increases permeation as well as selectivity. Thus, a PES/PEG blend polymeric membrane fabricated using NMP and DMF solvents is believed to be a major prospect for CO2/N2 gas separation.
Collapse
|
35
|
|
36
|
Wang H, Wang C, Zhang Z, Fan M, Yan X, Li F. Selection of State Equation and Innovative Process Design for Removing CO
2
by Azeotropic Distillation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haiqin Wang
- China University of Petroleum (East China) College of Pipeline and Civil Engineering 266580 Qingdao Shandong China
- Shandong Key Laboratory of Oil and Gas Storage and Transportation Safety 266580 Qingdao Shandong China
| | - Ce Wang
- China University of Petroleum (East China) College of Pipeline and Civil Engineering 266580 Qingdao Shandong China
| | - Zubin Zhang
- China University of Petroleum (East China) College of Pipeline and Civil Engineering 266580 Qingdao Shandong China
- Shandong Key Laboratory of Oil and Gas Storage and Transportation Safety 266580 Qingdao Shandong China
| | - Minglong Fan
- CNOOC Gas and Power Group Research and Development Centre 100028 Beijing China
| | - Xiaodong Yan
- China University of Petroleum (East China) College of Pipeline and Civil Engineering 266580 Qingdao Shandong China
| | - Fengqi Li
- China University of Petroleum (East China) College of Pipeline and Civil Engineering 266580 Qingdao Shandong China
| |
Collapse
|
37
|
Impacts of Green Synthesis Process on Asymmetric Hybrid PDMS Membrane for Efficient CO 2/N 2 Separation. MEMBRANES 2021; 11:membranes11010059. [PMID: 33467589 PMCID: PMC7830936 DOI: 10.3390/membranes11010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
The effects of green processes in hybrid polydimethylsiloxane (PDMS) membranes on CO2 separation have received little attention to date. The effective CO2 separation of the membranes is believed to be controlled by the reaction and curing process. In this study, hybrid PDMS membranes were fabricated on ceramic substrates using the water-in-emulsion method and evaluated for their gas transport properties. The effects of the tetraethylorthosilicate (TEOS) concentration and curing temperature on the morphology and CO2 separation performance were investigated. The viscosity measurement showed that, at specific reaction times, it is benefit beneficial to fabricate the symmetric hybrid PDMS membranes with a uniform and dense selective layer on the substrate. Moreover, the a high TEOS concentration can decrease the reaction time and obtain create the a fully crosslinked structure, allowing more efficient CO2/N2 separation. The separation performance was furtherly improved with in the membrane prepared at a high curing temperature of 120 °C. The developed membrane shows excellent CO2/N2 separation with a CO2 permeance of 27.7 ± 1.3 GPU and a CO2/N2 selectivity of 10.3 ± 0.3. Moreover, the membrane shows a stable gas separation performance of up to 5 bar of pressure.
Collapse
|
38
|
Synthesis, Characterization, and CO 2/N 2 Separation Performance of POEM- g-PAcAm Comb Copolymer Membranes. Polymers (Basel) 2021; 13:polym13020177. [PMID: 33419151 PMCID: PMC7825499 DOI: 10.3390/polym13020177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Alcohol-soluble comb copolymers were synthesized from rubbery poly(oxyethylene methacrylate) (POEM) and glassy polyacrylamide (PAcAm) via economical and facile free-radical polymerization. The synthesis of comb copolymers was confirmed by Fourier-transform infrared and proton nuclear magnetic resonance spectroscopic studies. The bicontinuous microphase-separated morphology and amorphous structure of comb copolymers were confirmed by wide-angle X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. With increasing POEM content in the comb copolymer, both CO2 permeability and CO2/N2 selectivity gradually increased. A mechanically strong free-standing membrane was obtained at a POEM:PAcAm ratio of 70:30 wt%, in which the CO2 permeability and CO2/N2 selectivity reached 261.7 Barrer (1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1) and 44, respectively. These values are greater than those of commercially available Pebax and among the highest separation performances reported previously for alcohol-soluble, all-polymeric membranes without porous additives. The high performances were attributed to an effective CO2-philic pathway for the ethylene oxide group in the rubbery POEM segments and prevention of the N2 permeability by glassy PAcAm chains.
Collapse
|
39
|
Zhao D, Wu Y, Ren J, Qiu Y, Hua K, Deng M. The novel micro-phase separated CO2-selective mixed matrix membranes (MMMs) modified with ester group by EPEG. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Han X, Jin S, Zhang J, Yue C, Zhang H, Pang J, Jiang Z. Novel poly(ether sulfone) with tetraphenyl bipyrimidine unit for gas separation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ramos F, Forsyth M, Pringle JM. Organic Ionic Plastic Crystal-Based Composite Membranes for Light Gas Separation: The Impact of Varying Ion Type and Casting Method. CHEMSUSCHEM 2020; 13:5740-5748. [PMID: 32902204 DOI: 10.1002/cssc.202001921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The promise of organic ionic plastic crystals (OIPCs) for development of a novel type of gas separation membrane with competitive gas selectivity for CO2 /N2 was recently demonstrated. This work aimed to design more selective membranes by investigating a different type of OIPC and a new membrane preparation method. Two different OIPCs were solvent-cast or co-cast with poly(vinylidene difluoride) (PVDF), and their gas transport properties were compared. The first OIPC, methyl(diethyl)isobutylphosphonium hexafluorophosphate ([P122i4 ][PF6 ]), was previously studied using the co-cast method, and this was used as a benchmark. The second, N-methyl-N-ethylpyrrolidinium bis(fluorosulfonyl)imide ([C2 mpyr][FSI]), was investigated for the first time for gas separation applications, achieving high selectivities (α CO 2 / N 2 >40). The thermophysical properties of the composites indicated that the co-casting method is a good way to fabricate solid, mechanically stable and durable membranes. Additionally, the enhanced molecular interactions indicated in OIPC/PVDF co-cast composites point to a new approach for synthesis of other highly selective OIPC-based membranes.
Collapse
Affiliation(s)
- Fernando Ramos
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| |
Collapse
|
42
|
Sun H, Bao S, Zhao H, Chen Y, Wang Y, Jiang C, Li P, Jason Niu Q. Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Abd AA, Naji SZ, Hashim AS, Othman MR. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104142. [DOI: 10.1016/j.jece.2020.104142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
44
|
Townsend J, Micucci CP, Hymel JH, Maroulas V, Vogiatzis KD. Representation of molecular structures with persistent homology for machine learning applications in chemistry. Nat Commun 2020; 11:3230. [PMID: 32591514 PMCID: PMC7319956 DOI: 10.1038/s41467-020-17035-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022] Open
Abstract
Machine learning and high-throughput computational screening have been valuable tools in accelerated first-principles screening for the discovery of the next generation of functionalized molecules and materials. The application of machine learning for chemical applications requires the conversion of molecular structures to a machine-readable format known as a molecular representation. The choice of such representations impacts the performance and outcomes of chemical machine learning methods. Herein, we present a new concise molecular representation derived from persistent homology, an applied branch of mathematics. We have demonstrated its applicability in a high-throughput computational screening of a large molecular database (GDB-9) with more than 133,000 organic molecules. Our target is to identify novel molecules that selectively interact with CO2. The methodology and performance of the novel molecular fingerprinting method is presented and the new chemically-driven persistence image representation is used to screen the GDB-9 database to suggest molecules and/or functional groups with enhanced properties.
Collapse
Affiliation(s)
- Jacob Townsend
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996-1600, USA
| | | | - John H Hymel
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996-1600, USA
| | - Vasileios Maroulas
- Department of Mathematics, University of Tennessee, Knoxville, TN, 37996-1320, USA.
| | | |
Collapse
|
45
|
Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Wong KK, Jawad ZA. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1978-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Chawla M, Saulat H, Masood Khan M, Mahmood Khan M, Rafiq S, Cheng L, Iqbal T, Rasheed MI, Farooq MZ, Saeed M, Ahmad NM, Khan Niazi MB, Saqib S, Jamil F, Mukhtar A, Muhammad N. Membranes for CO
2
/CH
4
and CO
2
/N
2
Gas Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900375] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muhammad Chawla
- Tianjin UniversityCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology 300350 Tianjin China
| | - Hammad Saulat
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Muhammad Masood Khan
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Muhammad Mahmood Khan
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Sikander Rafiq
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | - Linjuan Cheng
- Dalian University of TechnologyState Key Laboratory of Fine Chemicals, School of Chemical Engineering 116024 Dalian China
| | - Tanveer Iqbal
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | - M. Imran Rasheed
- University of Engineering and TechnologyDepartment of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | | | | | - Nasir M. Ahmad
- National University of Sciences and TechnologySchool of Chemical and Materials Engineering 44000 Islamabad Pakistan
| | - Muhammad Bilal Khan Niazi
- National University of Sciences and TechnologySchool of Chemical and Materials Engineering 44000 Islamabad Pakistan
| | - Sidra Saqib
- COMSATS University IslamabadDepartment of Chemical Engineering Lahore Campus 54000 Lahore Pakistan
| | - Farrukh Jamil
- COMSATS University IslamabadDepartment of Chemical Engineering Lahore Campus 54000 Lahore Pakistan
| | - Ahmad Mukhtar
- Universiti Teknologi PETRONASDepartment of Chemical Engineering Bandar Seri Iskandar 32610 Perak Malaysia
| | - Nawshad Muhammad
- COMSATS University IslamabadInterdisciplinary Research Centre in Biomedical Materials (IRCBM) Lahore Campus, Defense Road Off Raiwind Road Lahore Pakistan
| |
Collapse
|
48
|
Fauzan NAB, Mannan HA, Nasir R, Mohshim DFB, Mukhtar H. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO
2
Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nur Aqilah Bt Fauzan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering 23890 Jeddah Saudi Arabia
| | - Dzeti Farhah Bt Mohshim
- Universiti Teknologi PETRONASPetroleum Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hilmi Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| |
Collapse
|
49
|
de Oliveira LH, Meneguin JG, Pereira MV, do Nascimento JF, Arroyo PA. Adsorption of hydrogen sulfide, carbon dioxide, methane, and their mixtures on activated carbon. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1601627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- L. H. de Oliveira
- Laboratory of Adsorption and Ion Exchange, Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brasil
| | - J. G. Meneguin
- Laboratory of Adsorption and Ion Exchange, Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brasil
| | - M. V. Pereira
- Laboratory of Adsorption and Ion Exchange, Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brasil
| | | | - P. A. Arroyo
- Laboratory of Adsorption and Ion Exchange, Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brasil
| |
Collapse
|
50
|
Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. ENERGIES 2019. [DOI: 10.3390/en12030559] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A technical evaluation of CO2 capture technologies when retrofitted to a cement plant is performed. The investigated technologies are the oxyfuel process, the chilled ammonia process, membrane-assisted CO2 liquefaction, and the calcium looping process with tail-end and integrated configurations. For comparison, absorption with monoethanolamine (MEA) is used as reference technology. The focus of the evaluation is on emission abatement, energy performance, and retrofitability. All the investigated technologies perform better than the reference both in terms of emission abatement and energy consumption. The equivalent CO2 avoided are 73–90%, while it is 64% for MEA, considering the average EU-28 electricity mix. The specific primary energy consumption for CO2 avoided is 1.63–4.07 MJ/kg CO2, compared to 7.08 MJ/kg CO2 for MEA. The calcium looping technologies have the highest emission abatement potential, while the oxyfuel process has the best energy performance. When it comes to retrofitability, the post-combustion technologies show significant advantages compared to the oxyfuel and to the integrated calcium looping technologies. Furthermore, the performance of the individual technologies shows strong dependencies on site-specific and plant-specific factors. Therefore, rather than identifying one single best technology, it is emphasized that CO2 capture in the cement industry should be performed with a portfolio of capture technologies, where the preferred choice for each specific plant depends on local factors.
Collapse
|