1
|
Abu Sayeed M, Woods C, Love J, O'Mullane AP. Electrochemical Synthesis of a Multipurpose Pt−Ni Catalyst for Renewable Energy‐Related Electrocatalytic Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md Abu Sayeed
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Charlotte Woods
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Jonathan Love
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| | - Anthony P. O'Mullane
- School of Chemistry and Physics Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
- Centre for Clean Energy Technologies and Practices Queensland University of Technology (QUT) Brisbane QLD 4001 Australia
| |
Collapse
|
2
|
Zwaschka G, Nahalka I, Marchioro A, Tong Y, Roke S, Campen RK. Imaging the Heterogeneity of the Oxygen Evolution Reaction on Gold Electrodes Operando: Activity is Highly Local. ACS Catal 2020; 10:6084-6093. [PMID: 32551180 PMCID: PMC7295367 DOI: 10.1021/acscatal.0c01177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Indexed: 11/29/2022]
Abstract
![]()
Understanding the mechanism of the oxygen evolution reaction (OER), the oxidative half of electrolytic
water splitting, has proven challenging. Perhaps the largest hurdle
has been gaining experimental insight into the active site of the
electrocatalyst used to facilitate this chemistry. Decades of study
have clarified that a range of transition-metal oxides have particularly
high catalytic activity for the OER. Unfortunately, for virtually
all of these materials, metal oxidation and the OER occur at similar
potentials. As a result, catalyst surface topography and electronic
structure are expected to continuously evolve under reactive conditions.
Gaining experimental insight into the OER mechanism on such materials
thus requires a tool that allows spatially resolved characterization
of the OER activity. In this study, we overcome this formidable experimental
challenge using second harmonic microscopy and electrochemical methods
to characterize the spatial heterogeneity of OER activity on polycrystalline
Au working electrodes. At moderately anodic potentials, we find that
the OER activity of the electrode is dominated by <1% of the surface
area and that there are two types of active sites. The first is observed
at potentials positive of the OER onset and is stable under potential
cycling (and thus presumably extends multiple layers into the bulk
gold electrode). The second occurs at potentials negative of the OER
onset and is removed by potential cycling (suggesting that it involves
a structural motif only 1–2 Au layers deep). This type of active
site is most easily understood as the catalytically active species
(hydrous oxide) in the so-called incipient hydrous oxide/adatom mediator
model of electrocatalysis. Combining the ability we demonstrate here
to characterize the spatial heterogeneity of OER activity with a systematic
program of electrode surface structural modification offers the possibility
of creating a generation of OER electrocatalysts with unusually high
activity.
Collapse
Affiliation(s)
- Gregor Zwaschka
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Igor Nahalka
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Arianna Marchioro
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering (IBI) and Materials Science and Engineering (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - R. Kramer Campen
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Faculty of Physics, University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| |
Collapse
|
3
|
Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. NANOMATERIALS 2018; 8:nano8100756. [PMID: 30257501 PMCID: PMC6215138 DOI: 10.3390/nano8100756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The electrochemical formation of nanostructured materials is a cost effective route to creating substrates that can be employed in a variety of applications. In this work the surface of a copper electrode was electrochemically restructured in an alkaline solution containing ethanol as an additive to modify the surface morphology, and generate a Cu/Cu₂O surface, which is known to be active for the electrocatalytic reduction of environmentally harmful nitrate ions. To increase the activity of the nanostructured surface it was decorated with gold prisms through a facile galvanic replacement approach to create an active Cu/Cu₂O/Au layer. The surface was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, as well as electrochemical techniques. It was found that the presence of recalcitrant oxides, and Au was beneficial for the increased activity compared to unmodified copper and undecorated restructured copper and was consistent with the incipient hydrous oxide adatom mediator model of electrocatalysis. This approach to generating nanostructured metal/metal oxide surfaces that can be galvanically replaced to create these types of composites may have other applications in the area of electrocatalysis.
Collapse
|
4
|
Liu X, Astruc D. From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605305. [PMID: 28128862 DOI: 10.1002/adma.201605305] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/01/2016] [Indexed: 05/28/2023]
Abstract
The properties of two alloyed metals have been known since the Bronze Age to outperform those of a single metal. How alloying and mixing metals applies to the nanoworld is now attracting considerable attention. The galvanic process, which is more than two centuries old and involves the reduction of a noble-metal cation by a less noble metal, has not only been used in technological processes, but also in the design of nanomaterials for the synthesis of bimetallic transition-metal nanoparticles. The background and nanoscience applications of the galvanic reactions (GRs) are reviewed here, in particular with emphasis on recent progress in bimetallic catalysis. Very recently, new reactions have been discovered with nanomaterials that contradict the galvanic principle, and these reactions, called anti-galvanic reactions (AGRs), are now attracting much interest for their mechanistic, synthetic, catalytic, and sensor aspects. The second part of the review deals with these AGRs and compares GRs and AGRs, including the intriguing AGRs mechanism and the first applications.
Collapse
Affiliation(s)
- Xiang Liu
- ISM, UMR CNRS 5255, Université de Bordeaux, 351 Cours de la Liberation, 33405, Talence Cedex, France
- UMR 6226, Institut des Sciences Chimiques de Rennes, CNRS-Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS 5255, Université de Bordeaux, 351 Cours de la Liberation, 33405, Talence Cedex, France
| |
Collapse
|
5
|
Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK. Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E406. [PMID: 28773528 PMCID: PMC5456764 DOI: 10.3390/ma9060406] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022]
Abstract
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nurhidayatullaili Muhd Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wan Jefrey Basirun
- Institute of Postgraduate Studies, Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| |
Collapse
|
6
|
Tyagi H, Khan T, Mohapatra J, Mitra A, Kalita H, Aslam M. The exclusive response of LSPR in uncapped gold nanoparticles towards silver ions and gold chloride ions. RSC Adv 2016. [DOI: 10.1039/c6ra23403h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
LSPR of gold nanoparticles supported over glass or silica nanoparticles modulated using simple ionic treatment.
Collapse
Affiliation(s)
- Himanshu Tyagi
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Tuhin Khan
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Jeotikanta Mohapatra
- Centre for Research in Nanotechnology and Science (CRNTS)
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Arijit Mitra
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Hemen Kalita
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
- Department of Physics
| | - Mohammed Aslam
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
7
|
Royal Australian Chemical Institute Awards: A. O'Mullane, B. J. Smith, M. G. Banwell, R. J. Payne, D. M. D'Alessandro, and C. Wentrup / Swiss Chemical Society Awards: G. Gasser and N. Banerji. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201500145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Preise des Royal Australian Chemical Institute: A. O'Mullane, B. J. Smith, M. G. Banwell, R. J. Payne, D. M. D'Alessandro und C. Wentrup / Preise der Schweizerischen Chemischen Gesellschaft: G. Gasser und N. Banerji. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Sabri YM, Kandjani AE, Ippolito SJ, Bhargava SK. Nanosphere monolayer on a transducer for enhanced detection of gaseous heavy metal. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1491-1499. [PMID: 25562372 DOI: 10.1021/am507069z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study reports for the first time that polystyrene monodispersed nanosphere monolayer (PS-MNM) based Au (Au-MNM) and Ag (Ag-MNM) nanostructures deposited on quartz crystal microbalance (QCM) transducers can be used for nonoptical based chemical sensing with extremely high sensitivity and selectivity. This was demonstrated by exposing the Au-MNM and Ag-MNM based QCMs to low concentrations of Hg(0) vapor in the presence interferent gas species (i.e., H2O, NH3, volatile organics, etc.) at operating temperatures of 30 and 75 °C. At 30 °C, the Au-MNM and Ag-MNM based QCMs showed ∼16 and ∼20 times higher response magnitude toward Hg(0) vapor concentration of 3.26 mg/m(3) (364 parts per billion by volume (ppbv)) relative to their unmodified control counterparts, respectively. The results indicated that the extremely high sensitivity was not due to the increased surface area (only 4.62 times increase) but due to their long-range interspatial order and high number of surface defect formation which are selectively active toward Hg(0) vapor sorption. The Au-MNM and Ag-MNM also had more than an order of magnitude lower detection limits (<3 ppbv) toward Hg(0) vapor compared to their unmodified control counterparts (>30 ppbv). When the operating temperature was increased from 30 to 75 °C, it was found that the sensors exhibited lower drift, better accuracy, and better selectivity toward Hg(0) vapor but at the compromise of higher detection limits. The high repeatability (84%), accuracy (97%), and stability of Au-MNM in particular make it practical to potentially be used as nonspectroscopic based Hg(0) vapor sensor in many industries either as mercury emission monitoring or as part of a mercury control feedback system.
Collapse
Affiliation(s)
- Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University , GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | | | | | | |
Collapse
|
10
|
Larki P, Sabri YM, Kabir KMM, Nafady A, Kandjani AE, Bhargava SK. Silver/gold core/shell nanowire monolayer on a QCM microsensor for enhanced mercury detection. RSC Adv 2015. [DOI: 10.1039/c5ra19132g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The formation of a silver nanowire monolayer (Ag NWML) galvanically replaced with gold (Au) directly on the electrodes of a quartz crystal microbalance (QCM) transducer for non-spectroscopic based elemental mercury (Hg0) vapor sensing is reported in this study.
Collapse
Affiliation(s)
- Paria Larki
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Ylias M. Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - K. M. Mohibul Kabir
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Ayman Nafady
- Department of Chemistry
- Faculty of Science
- Sohag University
- Sohag
- Egypt
| | - Ahmad Esmaielzadeh Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)
- School of Applied Sciences
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
11
|
Pearson A, O'Mullane AP. A simple approach to improve the electrocatalytic properties of commercial Pt/C. Chem Commun (Camb) 2015; 51:11297-300. [DOI: 10.1039/c5cc03834k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Decoration of commercial Pt/C with Au via a simple solution process to improve electrocatalytic ethanol oxidation.
Collapse
Affiliation(s)
| | - Anthony P. O'Mullane
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
12
|
O'Mullane AP. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis. NANOSCALE 2014; 6:4012-4026. [PMID: 24599277 DOI: 10.1039/c4nr00419a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials.
Collapse
Affiliation(s)
- Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|