1
|
Kim N, Knust KN, Su X. Multiplexed and Membraneless Redox-Mediated Electrochemical Separations Through Bipolar Electrochemistry. CHEMSUSCHEM 2025:e2500497. [PMID: 40257448 DOI: 10.1002/cssc.202500497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/12/2025] [Accepted: 04/20/2025] [Indexed: 04/22/2025]
Abstract
Redox-active electrosorbents are promising platforms for selective separations. However, these platforms face intrinsic challenges in extracting multiple species simultaneously, as their binding mechanisms are typically tailored to separate a single ion preferentially. Here, bipolar electrochemistry is leveraged to introduce a new strategy for the multiplexed use of redox-active and capacitive materials for separations. Using polyvinyl ferrocene (PVF)-, Prussian blue analog (PBA)-functionalized, and carbon-based electrodes, multicomponent separations within a modular bipolar electrode (BPE) platform are demonstrated. The multiplexed BPE system provides distinct electrochemical environments within each BPE pair, enabling parallel selective separations. With three identical PVF BPEs, arsenic uptake increased linearly from 41.4 to 115.4 mgAs gPVF -1, highlighting the scalability of the system. Moreover, deploying three distinct BPE pairs-PBA, PVF, and carbon-enables simultaneous potassium recovery (11.0 mg g-1), arsenic removal (19.8 mg g-1), and desalination (4.2 mg g-1) from secondary wastewater, demonstrating real-world applicability. This wireless, membraneless architecture enables process-intensified selective separations by precisely controlling local electric fields on individual redox-active materials, facilitating electrosorption and regeneration across diverse BPE systems within a unified process.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, 600 S Mathews Ave., Urbana, 61801, IL, USA
| | - Kyle N Knust
- Department of Chemistry, Millikin University, 1184 W. Main St., Decatur, 62522, IL, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, 600 S Mathews Ave., Urbana, 61801, IL, USA
| |
Collapse
|
2
|
Grecchi S, Bonczak B, Malacarne F, Salinas G, Cirilli R, Arnaboldi S. Wireless asymmetric umpolung electrosynthesis. Chem Commun (Camb) 2024; 60:10120-10123. [PMID: 38979647 PMCID: PMC11392033 DOI: 10.1039/d4cc02406k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Electroorganic synthesis has become an exciting tool for the asymmetric conversion of pro-chiral compounds. Herein, we introduced a wireless methodology based on bipolar electrochemistry in synergy with the enantioselective capabilities of inherently chiral oligomers to induce an umpolung chirality transfer. This was exemplified by the electro-conversion of a racemic mixture of lansoprazole to an enantio-enriched solution of a single antipode.
Collapse
Affiliation(s)
- Sara Grecchi
- Dip. Di Chimica, Univ. degli Studi di Milano, Milan, Italy.
| | | | | | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607 Pessac, France
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | | |
Collapse
|
3
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Visualizing electron transfer at semiconductor–metal interface by surface plasmon resonance imaging. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Sopha H, Rodriguez‐Pereira J, Cicmancova V, Macak JM. Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem 2021. [DOI: 10.1002/celc.202100799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanna Sopha
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Jhonatan Rodriguez‐Pereira
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Veronika Cicmancova
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
| | - Jan M. Macak
- Center of Materials and Nanotechnologies Faculty of Chemical Technology University of Pardubice Nam. Cs. Legii 565 53002 Pardubice Czech Republic
- Central European Institute of Technology Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
6
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
7
|
Ismail A, Voci S, Descamps L, Buhot A, Sojic N, Leroy L, Bouchet-Spinelli A. Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. Chemphyschem 2021; 22:1094-1100. [PMID: 33826213 DOI: 10.1002/cphc.202100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Indexed: 11/09/2022]
Abstract
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.
Collapse
Affiliation(s)
- Abdulghani Ismail
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Silvia Voci
- ISM, UMR CNRS 5255, University of Bordeaux, Bordeaux INP, 351 Cours de la Libération, 33405, Talence, France
| | - Lucie Descamps
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Arnaud Buhot
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Neso Sojic
- ISM, UMR CNRS 5255, University of Bordeaux, Bordeaux INP, 351 Cours de la Libération, 33405, Talence, France
| | - Loïc Leroy
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Aurélie Bouchet-Spinelli
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| |
Collapse
|
8
|
Qin X, Li ZQ, Zhou Y, Pan JB, Li J, Wang K, Xu JJ, Xia XH. Fabrication of High-Density and Superuniform Gold Nanoelectrode Arrays for Electrochemical Fluorescence Imaging. Anal Chem 2020; 92:13493-13499. [DOI: 10.1021/acs.analchem.0c02918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
McWilliams S, Flynn CD, McWilliams J, Arnold DC, Wahyuono RA, Undisz A, Rettenmayr M, Ignaszak A. Nanostructured Cu 2O Synthesized via Bipolar Electrochemistry. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1781. [PMID: 31847448 PMCID: PMC6956072 DOI: 10.3390/nano9121781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/03/2022]
Abstract
Cuprous oxide (Cu2O) was synthesized for the first time via an open bipolar electrochemistry (BPE) approach and characterized in parallel with the commercially available material. As compared to the reference, Cu2O formed through a BPE reaction demonstrated a decrease in particle size; an increase in photocurrent; more efficient light scavenging; and structure-correlated changes in the flat band potential and charge carrier concentration. More importantly, as-synthesized oxides were all phase-pure, defect-free, and had an average crystallite size of 20 nm. Ultimately, this study demonstrates the impact of reaction conditions (e.g., applied potential, reaction time) on structure, morphology, surface chemistry, and photo-electrochemical activity of semiconducting oxides, and at the same time, the ability to maintain a green synthetic protocol and potentially create a scalable product. In the proposed BPE synthesis, we introduced a common food supplement (potassium gluconate) as a reducing and complexing agent, and as an electrolyte, allowing us to replace the more harmful reactants that are conventionally used in Cu2O production. In addition, in the BPE process very corrosive reactants, such as hydroxides and metal precursors (required for synthesis of oxides), are generated in situ in stoichiometric quantity, providing an alternative methodology to generate various nanostructured materials in high yields under mild conditions.
Collapse
Affiliation(s)
- Steven McWilliams
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (S.M.); (C.D.F.)
| | - Connor D. Flynn
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (S.M.); (C.D.F.)
| | - Jennifer McWilliams
- Department of Psychology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Donna C. Arnold
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK;
| | - Ruri Agung Wahyuono
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität, 07743 Jena, Germany;
| | - Andreas Undisz
- Otto Schott Institute of Materials Research, Chair of Metallic Materials, Friedrich-Schiller-Universität, 07743 Jena, Germany; (A.U.); (M.R.)
| | - Markus Rettenmayr
- Otto Schott Institute of Materials Research, Chair of Metallic Materials, Friedrich-Schiller-Universität, 07743 Jena, Germany; (A.U.); (M.R.)
| | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (S.M.); (C.D.F.)
| |
Collapse
|
10
|
Local electrochemistry of nickel (oxy)hydroxide material gradients prepared using bipolar electrodeposition. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
|
12
|
A highly-sensitive electrocatalytic measurement of nitrate ions in soil and different fruit vegetables at the surface of palladium nanoparticles modified DVD using the open bipolar system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
|
14
|
Hu S, Gao J. Dynamic Bipolar Electrode Array for Visualized Screening of Electrode Materials in Light-Emitting Electrochemical Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1117-1124. [PMID: 30507115 DOI: 10.1021/acsami.8b17623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Charge injection at a metal/semiconductor interface is of paramount importance for many chemical and physical processes. The dual injection of electrons and holes, for example, is necessary for electroluminescence in organic light-emitting devices. In an electrochemical cell, charge transfer across the electrode interface is responsible for redox reactions and Faradic current flow. In this work, we use polymer light-emitting electrochemical cells (PLECs) to visually assess the ability of metals to inject electronic charges into a luminescent polymer. Silver, aluminum, and gold microdisks are deposited between the two driving electrodes of the PLEC in the form of a horizontal array. When the PLEC is polarized, the individual disks functioned as bipolar electrodes (BPEs) to induce redox p- and n-doping reactions at their extremities, which are visualized as strongly photoluminescence-quenched growth in the luminescent polymer. The three metals initially generate highly distinct doping patterns that are consistent with differences in their work function. Over time, the doped regions continue to grow in size. Quantitative analysis of the n/p area ratio reveals an amazing convergence to a single value for all 39 BPEs, regardless of their metal type and large variation in the size of individual doped areas. We introduce the concept of a dynamic BPE, which transforms from an initial metal disk of a fixed size to one that is a composite of p- and n-doped polymer joined by the initial metallic BPE. The internal structure of the dynamic BPE, as measured by the n/p area ratio, reflects the properties of only the mixed conductor of the PLEC active layer itself when the area ratio converges.
Collapse
Affiliation(s)
- Shiyu Hu
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Jun Gao
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
15
|
Bertoncello P, Ugo P. Recent Advances in Electrochemiluminescence with Quantum Dots and Arrays of Nanoelectrodes. ChemElectroChem 2017. [DOI: 10.1002/celc.201700201] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paolo Bertoncello
- College of Engineering; Swansea University; Bay Campus Swansea SA1 8EN United Kingdom
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems; University Ca' Foscari Venice; via Torino 155 30172 Venezia-Mestre Italy
| |
Collapse
|
16
|
Allagui A, Ashraf JM, Khalil M, Abdelkareem MA, Elwakil AS, Alawadhi H. All-Solid-State Double-Layer Capacitors Using Binderless Reduced Graphene Oxide Thin Films Prepared by Bipolar Electrochemistry. ChemElectroChem 2017. [DOI: 10.1002/celc.201700266] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anis Allagui
- Dept. of Sustainable and Renewable Energy Engineering and Advanced Materials Research Center; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
- Center for Advanced Materials Research; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
| | - Juveiriah Mohammed Ashraf
- Dept. of Sustainable and Renewable Energy Engineering and Advanced Materials Research Center; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
- Center for Advanced Materials Research; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
| | - Malathe Khalil
- Dept. of Sustainable and Renewable Energy Engineering and Advanced Materials Research Center; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering and Advanced Materials Research Center; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
- Chemical Engineering Dept.; Minia University; Elminia Egypt
| | - Ahmed S. Elwakil
- Dept. of Electrical and Computer Engineering; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
- Nanoelectronics Integrated Systems Center (NISC); Nile University; Cairo Egypt
| | - Hussain Alawadhi
- Center for Advanced Materials Research; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
- Dept. of Applied Physics; University of Sharjah; PO Box 27272 Sharjah United Arab Emirates
| |
Collapse
|
17
|
Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sens 2017; 2:320-326. [PMID: 28723210 DOI: 10.1021/acssensors.7b00031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Huanhuan Xing
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
18
|
Karimian N, Moretto LM, Ugo P. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes. SENSORS 2016; 17:s17010065. [PMID: 28042840 PMCID: PMC5298638 DOI: 10.3390/s17010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 01/01/2023]
Abstract
Since the first reports dating back to the mid-1990s, ensembles and arrays of nanoelectrodes (NEEs and NEAs, respectively) have gained an important role as advanced electroanalytical tools thank to their unique characteristics which include, among others, dramatically improved signal/noise ratios, enhanced mass transport and suitability for extreme miniaturization. From the year 2000 onward, these properties have been exploited to develop electrochemical biosensors in which the surfaces of NEEs/NEAs have been functionalized with biorecognition layers using immobilization modes able to take the maximum advantage from the special morphology and composite nature of their surface. This paper presents an updated overview of this field. It consists of two parts. In the first, we discuss nanofabrication methods and the principles of functioning of NEEs/NEAs, focusing, in particular, on those features which are important for the development of highly sensitive and miniaturized biosensors. In the second part, we review literature references dealing the bioanalytical and biosensing applications of sensors based on biofunctionalized arrays/ensembles of nanoelectrodes, focusing our attention on the most recent advances, published in the last five years. The goal of this review is both to furnish fundamental knowledge to researchers starting their activity in this field and provide critical information on recent achievements which can stimulate new ideas for future developments to experienced scientists.
Collapse
Affiliation(s)
- Najmeh Karimian
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155-Mestre, 30172 Venice, Italy.
| | - Ligia M Moretto
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155-Mestre, 30172 Venice, Italy.
| | - Paolo Ugo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155-Mestre, 30172 Venice, Italy.
| |
Collapse
|
19
|
Phuakkong O, Sentic M, Li H, Warakulwit C, Limtrakul J, Sojic N, Kuhn A, Ravaine V, Zigah D. Wireless Synthesis and Activation of Electrochemiluminescent Thermoresponsive Janus Objects Using Bipolar Electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12995-13002. [PMID: 27951717 DOI: 10.1021/acs.langmuir.6b03040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, bipolar electrochemistry (BPE) is used as a dual wireless tool to generate and to activate a thermoresponsive electrochemiluminescent (ECL) Janus object. For the first time, BPE allows regioselective growth of a poly(N-isopropylacrylamide) (pNIPAM) hydrogel film on one side of a carbon fiber. It is achieved thanks to the local reduction of persulfate ions, which initiate radical polymerization of NIPAM. By controlling the electric field and the time of the bipolar electrochemical reactions, we are able to control the length and the thickness of the deposit. The resulting pNIPAM film is found to be swollen in water at room temperature and collapsed when heated above 32 °C. We further incorporated a covalently attached ruthenium complex luminophore, Ru(bpy)32+, in the hydrogel film. In the second time, BPE is used to activate remotely the electrogenerated chemiluminescence (ECL) of the Ru(bpy)32+ moieties in the film. We take advantage of the film responsiveness to amplify the ECL signal. Upon collapse of the film, the ECL signal, which is sensitive to the distance between adjacent Ru(bpy)32+ centers, is strongly amplified. It is therefore shown that BPE is a versatile tool to generate highly sophisticated materials based on responsive polymers, which could lead to sensitive sensors.
Collapse
Affiliation(s)
- Oranit Phuakkong
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok 10900, Thailand
- NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University , Bangkok 10900, Thailand
| | - Milica Sentic
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Haidong Li
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok 10900, Thailand
- NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University , Bangkok 10900, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology , Rayong 21210, Thailand
| | - Neso Sojic
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Alexander Kuhn
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Valérie Ravaine
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| | - Dodzi Zigah
- Univ. Bordeaux , ISM, CNRS UMR 5255, Bordeaux, F-33400 Talence, France
| |
Collapse
|