Jiang N, Wang Y, Zhao Q, Ye Z. Application of Ti/IrO
2 electrode in the electrochemical oxidation of the TNT red water.
ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020;
259:113801. [PMID:
31891908 DOI:
10.1016/j.envpol.2019.113801]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/15/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Via the thermal sintering, a nanocrystalline IrO2 coating was formed on the Ti substrate to successfully prepare a Ti/IrO2 electrode. Based on the electrochemical analysis, the prepared Ti/IrO2 electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV-vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO2 electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO2 function group in the TNT red water was degraded completely.
Collapse